Project description:Whole exome sequencing of a cell line derived from an Rb1 and Trp53 genetically engineered mouse model (GEMM) to assess the baseline copy number landscape of the cells prior to experimental modification.
Project description:Of the multiple anatomical sites represented in oral cancer, squamous cell carcinoma of the tongue (TSCC) shows the highest incidence among younger age group. Chewing betel leaf, areca nut & slaked lime and smoking tobacco are common practises in India which have direct clinical implication in TSCC carcinogenesis. Here, for the first time we define the landscape of genomic alterations in TSCC from the Indian diaspora which would help to identify novel therapeutic targets for clinical intervention and define the genetic basis for TSCC. We performed high throughput sequencing of fifty four tongue samples using whole exome sequencing (n=47, 23 paired normal tumor and 1 unpaired) and transcriptome sequencing (n=17, 10 tumor and 5 normal). Mutation, copy number analysis were carried out using exome sequencing data and transcriptome analysis provided expressed genes and transcript fusions in tongue cancer patients. Further, integrated analysis were performed to identify biologically relevant alterations. Our preliminary analysis revealed presence of most frequently altered mutations in TSCC which includes mutations in TP53, NOTCH1, CDKN2A, USP6, KMT2D etc, consistent with literature. We observed high frequency of CG/T(GC/A) transversions in non-CpG islands, a signature associated with tobacco exposure. Somatic copy number analysis revealed copy number gain in known hallmarks such as CCND1, MYC, ORAOV1 genes along with copy number alteration in novel genes. Significant positive correlation was observed in the genes harbouring copy number gains and showing increased expression.
Project description:Genomic technologies, such as whole-exome sequencing, are a powerful tool in genetic research. Such testing yields a great deal of incidental medical information, or medical information not related to the primary research target. We describe the management of incidental medical information derived from whole-exome sequencing in the research context. We performed whole-exome sequencing on a monozygotic twin pair in which only 1 child was affected with congenital anomalies and applied an institutional review board-approved algorithm to determine what genetic information would be returned. Whole-exome sequencing identified 79525 genetic variants in the twins. Here, we focus on novel variants. After filtering artifacts and excluding known single nucleotide polymorphisms and variants not predicted to be pathogenic, the twins had 32 novel variants in 32 genes that were felt to be likely to be associated with human disease. Eighteen of these novel variants were associated with recessive disease and 18 were associated with dominantly manifesting conditions (variants in some genes were potentially associated with both recessive and dominant conditions), but only 1 variant ultimately met our institutional review board-approved criteria for return of information to the research participants.
Project description:Next generation sequencing can be used to search for Mendelian disease genes in an unbiased manner by sequencing the entire protein-coding sequence, known as the exome, or even the entire human genome. Identifying the pathogenic mutation amongst thousands to millions of genomic variants is a major challenge, and novel variant prioritization strategies are required. The choice of these strategies depends on the availability of well-phenotyped patients and family members, the mode of inheritance, the severity of the disease and its population frequency. In this review, we discuss the current strategies for Mendelian disease gene identification by exome resequencing. We conclude that exome strategies are successful and identify new Mendelian disease genes in approximately 60% of the projects. Improvements in bioinformatics as well as in sequencing technology will likely increase the success rate even further. Exome sequencing is likely to become the most commonly used tool for Mendelian disease gene identification for the coming years.
Project description:Oral cavity Squamous Cell Carcinoma (OCSCC) is a common form of head and neck cancer through the developed and developing world. However, the etiology of OCSCC is still unclear. To explore whether smoking, HPV and/or other underlying genetic and transcriptomic changes could be responsible for the oncogenesis events for OCSCC. A prospective observational study of fresh tissue biopsy from 45 participants with OCSCC collected from Brisbane Head and Neck Clinics between 2013 to 2015. Exploration of the genetic and transcriptomic landscape was performed using RNA sequencing and whole exome sequencing. Identification of HPV was to be performed using DNA PCR genotyping and RNA sequencing. Patient medical records were retrieved and the patient demographics were used to correlate with genomic and transcriptomics analyses, including the location of the tumor within the oral cavity, smoking and alcohol histories.
Project description:Sequencing the coding regions, the exome, of the human genome is one of the major current strategies to identify low frequency and rare variants associated with human disease traits. So far, the most widely used commercial exome capture reagents have mainly targeted the consensus coding sequence (CCDS) database. We report the design of an extended set of targets for capturing the complete human exome, based on annotation from the GENCODE consortium. The extended set covers an additional 5594 genes and 10.3 Mb compared with the current CCDS-based sets. The additional regions include potential disease genes previously inaccessible to exome resequencing studies, such as 43 genes linked to ion channel activity and 70 genes linked to protein kinase activity. In total, the new GENCODE exome set developed here covers 47.9 Mb and performed well in sequence capture experiments. In the sample set used in this study, we identified over 5000 SNP variants more in the GENCODE exome target (24%) than in the CCDS-based exome sequencing.
Project description:Mutations in isocitrate dehydrogenase 2 (IDH2) occur in many cancers including Acute Myeloid Leukemia (AML). In preclinical models mutant IDH2 causes partial hemopoietic differentiation arrest. Recently, we showed that single agent Enasidenib, a first-in-class, selective mutant IDH2 inhibitor, produces a 40% response in relapsed/refractory AML patients by promoting differentiation. Yet, the rate, extend and duration of the clinical benefits of Enasidenib vary from one patient to another. To investigate how the genetic mutational landscape, at baseline or at relapse, contributes in modulating response to Enasidenib, WES analyses on FACS-sorted blasts from baseline, best response and/or relapse samples from 16 Enasidenib-treated patients were performed. WES analyses were also performed on the CD3+ cells from the same patients, which may be used as germinal control samples.
Project description:BACKGROUND:In developed countries, global developmental disorders are encounter- ed in approximately 1% of all children. The causes are manifold, and no exogenous cause can be identified in about half of the affected children. The parallel investi- gation of the coding sequences of all genes of the affected individual (whole exome sequencing, WES) has developed into a successful diagnostic method for identify- ing the cause of the problem. It is not yet clear, however, when WES should best be used in routine clinical practice in order to exploit the potential of this method to the fullest. METHODS:In an interdisciplinary study, we carried out standardized clinical pheno- typing and a systematic genetic analysis (WES of the index patient and his or her parents, so-called trio WES) in 50 children with developmental disturbances of unclear etiology and with nonspecific neurological manifestations. RESULTS:In 21 children (42% of the collective), we were able to identify the cause of the disorder by demonstrating a mutation in a gene known to be associated with disease. Three of these children subsequently underwent specific treatment. In 22 other children (44%), we detected possibly etiological changes in candidate genes not currently known to be associated with human disease. CONCLUSION:Our detection rate of at least 42% is high in comparison with the results obtained in other studies from Germany and other countries to date and implies that WES can be used to good effect as a differential diagnostic tool in pediatric neurol- ogy. WES should be carried out in both the index patient and his or her parents (trio- WES) and accompanied by close interdisciplinary collaboration of human geneti- cists and pediatricians, by comprehensive and targeted phenotyping (also after the diagnosis is established), and by the meticulous evaluation of all gene variants.