Project description:Porcine epidemic diarrhea (PED) first appeared in England and Belgium in the 1970s. The etiological agent of the disease is porcine epidemic diarrhea virus (PEDV), which belongs to Coronaviridae. The disease has spread globally and became an endemic disease in many Asian and European countries causing transient diarrhea in postweaning pigs with low mortalities for several decades. Since late 2010, field outbreaks of PED, which reemerged in China, spread to Asian and some European countries and emerged in North America; all led to enormous economic losses in porcine industry. New variants of PEDV exhibit not only significant genetic variations as compared to historic PEDV strains but also more virulent causing severe vomiting and watery yellowish diarrhea in suckling piglets under 1 week of age. Factors underlying the potential pathogenesis of the recent PEDV outbreaks include the mutation of the virus, the lacking of maternal antibodies for the protection of piglets, and the slower turnover rate of enterocytes (5–7 days) of the neonatal piglets as compared to postweaning pigs (2–3 days). The emerging and reemerging of the new variants of PEDV highlight the importance of reviewing the etiology, pathogenesis, diagnosis, and epidemiology of the disease.
Project description:Porcine epidemic diarrhea (PED) is an acute and highly contagious enteric disease of swine caused by the eponymous virus (PEDV) which belongs to the genus Alphacoronavirus within the Coronaviridae virus family. Following the disastrous outbreaks in Asia and the United States, PEDV has been detected also in Europe. In order to better understand the overall situation, the molecular epidemiology, and factors that might influence the most variable disease impact; 40 samples from swine feces were collected from different PED outbreaks in Germany and other European countries and sequenced by shot-gun next-generation sequencing. A total of 38 new PEDV complete coding sequences were generated. When compared on a global scale, all investigated sequences from Central and South-Eastern Europe formed a rather homogeneous PEDV S INDEL cluster, suggesting a recent re-introduction. However, in-detail analyses revealed two new clusters and putative ancestor strains. Based on the available background data, correlations between clusters and location, farm type or clinical presentation could not be established. Additionally, the impact of secondary infections was explored using the metagenomic data sets. While several coinfections were observed, no correlation was found with disease courses. However, in addition to the PEDV genomes, ten complete viral coding sequences from nine different data sets were reconstructed each representing new virus strains. In detail, three pasivirus A strains, two astroviruses, a porcine sapelovirus, a kobuvirus, a porcine torovirus, a posavirus, and an enterobacteria phage were almost fully sequenced.