Project description:The formation of Listeria monocytogenes biofilms contributes to persistent contamination in food processing facilities. A microarray comparison of L. monocytogenes between the transcriptome of the strong biofilm forming strain (Bfms) Scott A and the weak biofilm forming (Bfmw) strain F2365 was conducted to identify genes potentially involved in biofilm formation. Among 951 genes with significant difference in expression between the two strains, a GntR-family response regulator encoding gene (LMOf2365_0414), designated lbrA, was found to be highly expressed in Scott A relative to F2365. A Scott A lbrA-deletion mutant, designated AW3, formed biofilm to a much lesser extent as compared to the parent strain by a rapid attachment assay and scanning electron microscopy. Complementation with lbrA from Scott A restored the Bfms phenotype in the AW3 derivative. A second microarray assessment using the lbrA deletion mutant AW3 and the wild type Scott A revealed a total of 304 genes with expression significantly different between the two strains, indicating the potential regulatory role of LbrA in L. monocytogenes. A cloned copy of Scott A lbrA was unable to confer enhanced biofilm forming potential in F2365, suggesting that additional factors contributed to weak biofilm formation by F2365. Findings from the study may lead to new strategies to modulate biofilm formation. Two comparisons were performed between 1) strong biofilm former Listeria monocytogenes strain ScottA versus weak biofilm former Listeria monocytogenes strain F2365; 2) Listeria monocytogenes ScottA LbrA deletion mutant strain versus Listeria monocytogenes ScottA. Four replicates were loaded for the first comparison and two replicates were loaded for the second comparison.
Project description:Peracetic acid (PAA), a strong oxidizing agent, has been widely used as a disinfectant in food processing settings as it does not produce harmful chlorinated by-products. In the present study, the transcriptional response of Listeria monocytogenes to 2.5 ppm of PAA was assessed using RNA-sequencing (RNA-seq). Our analysis revealed 12 differentially expressed genes, of which 9 were up-regulated (ohrR, ohrA, rpsN, lmo0637, lmo1973, fur, lmo2492, zurM, and lmo1007), and 3 were down-regulated (argG, lmo0604, lmo2156) in PAA treated samples compared to the control samples. A non-coding small RNA (rli32) was also found to be down-regulated. In detail, the organic peroxide toxicity protection (OhrA-OhrR) system, the metal homeostasis genes fur and zurM, the SbrE-regulated lmo0636-lmo0637 operon and a carbohydrate phosphotransferase system (PTS) operon component were induced under exposure of L. monocytogenes to PAA. Hence, this study identified key elements involved in the primary response of L. monocytogenes to oxidative stress caused by PAA. The investigation of the molecular mechanism of PAA response in L. monocytogenes is of utmost importance for the food industry, as this response can be induced in food-processing environments, as a result of inadequate rinsing during the disinfection process, that lead to PAA residues at low concentrations.
Project description:The SOS response is a conserved pathway that is activated under certain stress conditions and is regulated by the repressor LexA and the activator RecA. The food-borne pathogen Listeria monocytogenes contains RecA and LexA homologs, but their roles in Listeria have not been established. In this study, we identified the SOS regulon in L. monocytogenes by comparing the transcription profiles of the wild-type strain and the ΔrecA mutant strain after exposure to the DNA damaging agent mitomycinC (MMC). The SOS response is an inducible pathway involved in DNA repair, restart of stalled replication forks, and in induction of genetic variation in stressed and stationary phase cells. It is regulated by LexA and RecA. LexA is an autoregulatory repressor which binds to a consensus sequence in the promoter region of the SOS response genes, thereby repressing transcription. A consensus LexA binding motif for L. monocytogenes has not been identified thus far. Generally, the SOS response is induced under circumstances in which single stranded DNA accumulates in the cell. This results in activation of RecA, which in turn stimulates cleavage of LexA, and ultimately in the induction of the SOS response. Keywords: stress response, loop design, SOS response, mitomycin c, listeria monocytogenes, RecA, LexA
Project description:The formation of Listeria monocytogenes biofilms contributes to persistent contamination in food processing facilities. A microarray comparison of L. monocytogenes between the transcriptome of the strong biofilm forming strain (Bfms) Scott A and the weak biofilm forming (Bfmw) strain F2365 was conducted to identify genes potentially involved in biofilm formation. Among 951 genes with significant difference in expression between the two strains, a GntR-family response regulator encoding gene (LMOf2365_0414), designated lbrA, was found to be highly expressed in Scott A relative to F2365. A Scott A lbrA-deletion mutant, designated AW3, formed biofilm to a much lesser extent as compared to the parent strain by a rapid attachment assay and scanning electron microscopy. Complementation with lbrA from Scott A restored the Bfms phenotype in the AW3 derivative. A second microarray assessment using the lbrA deletion mutant AW3 and the wild type Scott A revealed a total of 304 genes with expression significantly different between the two strains, indicating the potential regulatory role of LbrA in L. monocytogenes. A cloned copy of Scott A lbrA was unable to confer enhanced biofilm forming potential in F2365, suggesting that additional factors contributed to weak biofilm formation by F2365. Findings from the study may lead to new strategies to modulate biofilm formation.
Project description:Listeria monocytogenes is a food-borne pathogen and the causative agent of listeriosis, an infection which typically arises through the consumption of contaminated foodstuffs. L. monocytogenes is a psychotrophic and facultatively anaerobic; properties which permit growth under refrigeration conditions and within modified atmosphere packaging. Through transcriptional changes L. monocytogenes is able to mount adaptive responses against stressors. Such responses typically cross protect against subsequent stresses.
Project description:The foodborne pathogen Listeria monocytogenes uses a number of transcriptional regulators, including the negative regulator HrcA, to control gene expression under different environmental conditions and in response to stress. Gene expression patterns of DhrcA stationary phase cells were compared to wt to identify hrcA-dependent genes. We identified 61 HrcA-dependent genes that showed significant expression ratios (adj. P < 0.05), with ≥ 1.5-fold differential expression between ΔhrcA and wt. Combined with microarray analysis, Hidden Markov Model searches show HrcA directly repress at least 8 genes. Keywords: Listeria monocytogenes, HrcA regulon, stationary phase