Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Morphotypes of Brassica oleracea are the result of a dynamic interaction between the genes that regulate the transition between vegetative and reproductive stages and those that regulate leaf morphology and plant architecture. In kales ornate leaf patterns, flowering delaying and nutrient quality are some of the characters were potentially selected by humans during domestication. Understanding candidate genes responsible for kale domestication is of importance to ultimately improve crop production. We aim to identify candidate genes that are responsible for kale leaf shape diversity and the evolution of domestic kale. Here we look at the global pattern of expressed genes during one single phase of development in kale, cabbage and TO1000 to gain an understanding of the genome-wide differences among some of the vegetative B. oleracea phenotypes. We identified gene expression patterns that are shared among the phenotypes and estimate the contribution of morphotype-specific gene expression patterns that set each of them apart. Differentially expressed developmental genes that regulate the vegetative to reproductive transition were abundant and present in all comparisons.
Project description:Domestication of wild animals induces a set of phenotypic characteristics collectively known as the domestication syndrome. However, how this syndrome emerges is still not clear. Recently, the neural crest cell deficit hypothesis proposed that it is generated by a mildly disrupted neural crest cell developmental program, but clear support is lacking due to the difficulties of distinguishing pure domestication effects from preexisting genetic differences between farmed and wild mammals and birds. Here, we use a farmed fish as model to investigate the role of persistent changes in DNA methylation (epimutations) in the process of domestication.We show that early domesticates of sea bass, with no genetic differences with wild counterparts, contain epimutations in tissues with different embryonic origins. About one fifth of epimutations that persist into adulthood are established by the time of gastrulation and affect genes involved in developmental processes that are expressed in embryonic structures, including the neural crest. Some of these genes are differentially expressed in sea bass with lower jaw malformations, a key feature of domestication syndrome. Interestingly, these epimutations significantly overlap with cytosine-to-thymine polymorphisms after 25 years of selective breeding. Furthermore, epimutated genes coincide with genes under positive selection in other domesticates. We argue that the initial stages of domestication include dynamic alterations in DNA methylation of developmental genes that affect the neural crest. Our results suggest a role for epimutations during the beginning of domestication that could be fixed as genetic variants and suggest a conserved molecular process to explain Darwin’s domestication syndrome across vertebrates.
Project description:Through domestication, humans have substantially altered the morphology of Zea mays ssp. parviglumis (teosinte) into the currently recognizable maize. A wealth of archeological and population genetic data has established maize as a model system for studying domestication , genome evolution and the genetics and evolution of complex traits. We used expression profiling of 18,242 genes for 38 diverse maize genotypes and 18 teosinte genotypes to examine how domestication has re-shaped the transcriptome of maize seedlings. We detected evidence for more than 600 genes having significantly different expression levels in maize compared to teosinte as well as 800 genes with significantly altered co-expression profiles reflective of substantial rewiring of the transcriptome since domestication. These genes likely include loci with altered expression due to domestication. The genes with altered expression show a significant enrichment for genes located in regions that previous population genetic analyses have identified as having undergone a selective sweep during maize domestication; thirty-two genes previously identified as putative targets of selection also exhibit altered expression levels and co-expression relationships. We also identified 45 genes with altered, primarily higher, expression in inbred relative to out-crossed teosinte. These genes are over-represented for genes that function in response to biotic stress and may reflect responses to the effects of inbreeding. This study not only documents alterations in the maize transcriptome following domestication and identifies several genes that may have contributed to the evolution of maize but also highlights the complementary information that can be gained by combining gene expression with population genetic analyses.
Project description:This SuperSeries is composed of the following subset Series: GSE16889: Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of the brain transcriptome GSE16897: Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of the liver transcriptome GSE16901: Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of the muscle transcriptome Refer to individual Series
Project description:Domestication has been practiced for centuries yet directed towards relatively few terrestrial crops and animals. While phenotypic and quantitative genetic changes associated with domestication have been amply documented, little is known about the molecular changes underlying the phenotypic evolution during the process. Here, we have investigated the brook charr (Salvelinus fontinalis) responses to artificial selection by means of transcriptional analysis of ~ 32 000 cDNA features performed in both a selected and control populations reared under identical environmental conditions during four generations. Our results indicate that selective breeding led to significant changes in the transcription of genes at the juvenile stage, where we observed 4.16% (156/3750) of differentially expressed genes between the two lines. No significant genes were revealed at the earlier life stage. Moreover, when comparing our results to those of previous studies on Atlantic salmon that compared lines that were selected for 5-7 generations for similar traits (e.g. growth), genes with similar biological functions were found to be under selection in both studies. These observations indicate that (1) four generations of selection caused substantial changes in regulation of gene transcription between selected and control populations and (2) selective breeding for improving the same phenotypic traits (e.g. rapid growth) in brook charr and Atlantic salmon tended to select for the same changes in transcription profiles as the expression of a small and similar set of genes were affected by selection.