Project description:Bacterial swarming is a type of motility characterized by a rapid and collective migration of bacteria on surfaces. Most swarming species form densely packed dynamic clusters in the form of whirls and jets, in which hundreds of rod-shaped rigid cells move in circular and straight patterns, respectively. Recent studies have suggested that short-range steric interactions may dominate hydrodynamic interactions and that geometrical factors, such as a cell's aspect ratio, play an important role in bacterial swarming. Typically, the aspect ratio for most swarming species is only up to 5, and a detailed understanding of the role of much larger aspect ratios remains an open challenge. Here we study the dynamics of Paenibacillus dendritiformis C morphotype, a very long, hyperflagellated, straight (rigid), rod-shaped bacterium with an aspect ratio of ~20. We find that instead of swarming in whirls and jets as observed in most species, including the shorter T morphotype of P. dendritiformis, the C morphotype moves in densely packed straight but thin long lines. Within these lines, all bacteria show periodic reversals, with a typical reversal time of 20 s, which is independent of their neighbors, the initial nutrient level, agar rigidity, surfactant addition, humidity level, temperature, nutrient chemotaxis, oxygen level, illumination intensity or gradient, and cell length. The evolutionary advantage of this unique back-and-forth surface translocation remains unclear.
Project description:Transcriptional profiling of the bacteria Paenibacillus vortex comparing control untreated cells with kanamycin treated cells after 18 hours of exposure. Goal was to determine the effect of the antibiotic kanamycin in concentration which affect the colony morphology on global bacteria gene expression.
Project description:Dyes used in fabric and leather industry are being released and accumulated into Canadian ecosystems. Recent studies have demonstrated that dyes made of azo compounds significantly increase toxicity in biota, which is explained by their toxic metabolites (e.g., aromatic amines). The metabolites of azo compounds interact with hydrophobic surfaces of cell membranes causing expansion of the membrane which impede normal cellular functions. It has been suggested that this process leads to cell death due to improper ion balance. Currently, it is estimated that between 10 and 15% of azo dyes are released in the environment as effluent. The aim of this study was to evaluate toxicity and gene networks altered by azo compounds in amphibians using ecotoxicogenomic approaches. Larvae of the frog Silurana tropicalis (Western clawed frog) were exposed to sediment contaminated to 887 ppm Disperse Yellow 7 (DY7). Larvae were exposed from Nieuwkoop-Faber developmental stage 12 to 46. Data suggest that the azo dye DY7 induced cellular stress and interfered with androgen biosynthesis in early tadpole development. At exposure completion, RNA was isolated from whole larvae and quality was ascertained using bioanalyzer analysis. A custom Agilent 4 X 44 K microarray for S. tropicalis was used to characterize gene regulatory networks underlying toxicity. This study presents the transcriptional regulatory pathways affected by DY7 in S. tropicalis early development.