Project description:The aim of this project is to use transcriptome sequencing of parents and offspring of Leishmania tropica genetic crosses to establish the basic parameters of recombination in this species and to understand the extent and importance of gene conversion. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards.
Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards. Six strains of three Leishmania species were hybridizated to 12 microarrays, each with four biological replicates (independent cultures). Supplementary file: Represents final results obtained after statistical analysis of all replicates.
Project description:Some T's in nuclear DNA of trypanosomes and Leishmania are hydroxylated and glucosylated to yield base J (β-D-glucosyl-hydroxymethyluracil). In Leishmania about 99% of J is located in telomeric repeats. We show here that most of the remaining J is located at chromosome-internal RNA Polymerase II termination sites. Both this internal J and telomeric J can be reduced by a knockout of J-binding protein 2 (JBP2), an enzyme involved in the first step of J biosynthesis. J levels are further reduced by growing Leishmania JBP2 knockout cells in BrdU-containing medium, resulting in cell death. The loss of internal J is accompanied by massive read-through at RNA Polymerase II termination sites. The degree of read-through varies between transcription units, but may extend over 100 kb. We conclude that J is required for proper transcription termination and infer that the absence of internal J kills Leishmania by massive read-through of transcriptional stops.
Project description:Some T's in nuclear DNA of trypanosomes and Leishmania are hydroxylated and glucosylated to yield base J (?-D-glucosyl-hydroxymethyluracil). In Leishmania about 99% of J is located in telomeric repeats. We show here that most of the remaining J is located at chromosome-internal RNA Polymerase II termination sites. Both this internal J and telomeric J can be reduced by a knockout of J-binding protein 2 (JBP2), an enzyme involved in the first step of J biosynthesis. J levels are further reduced by growing Leishmania JBP2 knockout cells in BrdU-containing medium, resulting in cell death. The loss of internal J is accompanied by massive read-through at RNA Polymerase II termination sites. The degree of read-through varies between transcription units, but may extend over 100 kb. We conclude that J is required for proper transcription termination and infer that the absence of internal J kills Leishmania by massive read-through of transcriptional stops. We determined the exact location of base J in the genome of Leishmania by high-throughput sequencing of J containing DNA fragments. Samples were enriched for J-containing fragments by two independent methods: ChIP using an anti-J DNA antibody or by binding to a the J-binding protein JBP1. We studied the effect of loss of J on transcription using WT, JBP2 knockout (30-37% of WT level J), and JBP2 knockout cells grown in BrdU containing medium (13-16% of WT level of J). We used 6 RNA-seq libraries (three samples & two replica each) containing processed RNA products (transspliced and poly-adenylated) and 3 small RNA libraries representing the entire transcriptome.
Project description:a chromosome-level nuclear genome and organelle genomes of the alpine snow alga Chloromonas typhlos were sequenced and assembled by integrating short- and long-read sequencing and proteogenomic strategy
Project description:Protozoan parasites of the genus Leishmania are the causative agent of leishmaniasis, one of the 13 most important tropical diseases. Leishmania persists as endo-parasite in host macrophages, where it uses multiple strategies to manipulate the microbicidal host cell functions and to escape from the host immune system. Understanding how Leishmania interacts with host macrophages during uptake, differentiation, intracellular replication, and release might be the key to develop new drugs in target-directed approaches to treat patient with leishmaniasis. Short non-coding RNAs are known to regulate the expression of protein-coding genes at post-transcriptional level. Characterization of these processes during Leishmania infection provides deeper insight in the interaction between host and parasites.
Project description:Protozoan parasites of the genus Leishmania are the causative agent of leishmaniasis, one of the 13 most important tropical diseases. Leishmania persists as endo-parasite in host macrophages, where it uses multiple strategies to manipulate the microbicidal host cell functions and to escape from the host immune system. Understanding how Leishmania interacts with host macrophages during uptake, differentiation, intracellular replication, and release might be the key to develop new drugs in target-directed approaches to treat patient with leishmaniasis. Short non-coding RNAs are known to regulate the expression of protein-coding genes at post-transcriptional level. Characterization of these processes during Leishmania infection provides deeper insight in the interaction between host and parasites. Here, we generated miRNA expression profiles from bone marrow-derived macrophages (BMDM) at 4h and 24h post infection (p.i.) with Leishmania major and respective controls.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.