Project description:Chip-seq for MoAtf1 in M. oryzae, bZip transcription factor MoAtf1 was previous reported that involved in the full virulence of Magnaporthe oryzae. Here, we performed of MoAtf1 chip-seq assays to uncovered the regulation network
Project description:OsEDS1 is a key regulator of SA-mediated immunity in plants. The OsEDS1 knockout mutant (Oseds1) was characterized and shown to have increased susceptibility to Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), suggesting the positive role of OsEDS1 in regulating rice disease resistance. To identify differentially regulated downstream of Oseds1, we performed transcriptome deep sequencing (RNA-seq) of wild type (ZH11) and Oseds1 inoculated with Xanthomonas oryzae pv. Oryzae (PXO99A).
Project description:To examine how the Arabidopsis root development responds to the Rhizobium sp. IRBG74 treatment at the molecular level, we performed RNA-seq experiments. Our RNA-seq results suggest that expression of genes mainly involved in auxin signaling, cell wall and cell membrane integrity and transport is altered in response to colonization by Rhizobium sp. IRBG74.
Project description:This SuperSeries is composed of the following subset Series: GSE9640: Transcriptome Profiling of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola on two different medias GSE9643: Transcriptome Profiling of Xanthomonas oryzae pv. oryzae knockout mutants at different hybridization conditions and PMTs Keywords: SuperSeries Refer to individual Series
Project description:Transcription profiling of the DSF regulon in Xanthomonas oryzae pv. oryzae (Xoo) using wild type and the rpfF mutant. Cell-cell signaling mediated by the quorum sensing molecule known as Diffusible Signaling factor (DSF) is required for virulence of Xanthomonas group of plant pathogens. DSF in different Xanthomonas and the closely related plant pathogen Xylella fastidiosa regulates diverse traits in a strain specific manner. The transcriptional profiling performed in this study is to elucidate the traits regulated by DSF from the Indian isolate of Xanthomonas oryzae pv. oryzae, which exhibits traits very different from other Xanthomonas group of plant pathogen. In this study, transcription analysis was done between a wild type Xanthomonas oryzae pv. oryzae strain and an isogenic strain that has a mutation in the DSF biosynthetic gene rpfF.
Project description:The rice blast disease, caused by Magnaporthe oryzae , devastates cultivated rice (Oryza sativa L.), resulting in extensive global crop loss. We employed a label-free quantitative proteomics approach to discover novel proteins associated with M. oryzae pathogenicity and rice defense. We identified 990 significantly modulated proteins in rice leaves including various pattern recognition receptors (PRRs) and pathogenesis-related (PR) proteins that were induced in response to M. oryzae inoculation. Additionally, 123 M. oryzae proteins were also identified and screened for their cell death-inducing activity by an in-silico approach. Among these, we found a novel protein MoXYL1 (endo-1,4-beta-xylanase) protein, which induces cell death in Nicotiana benthamiana leaves. Transgenic rice plants (PDUF26::MoXYL1) expressing MoXYL1 derived by rice domain of unknown function protein 26 (DUF26) promoter exhibited resistance against the M. oryzae and Cochliobolus miyabeanus and enhanced expression of pathogen-responsive genes and hormone-related genes. Furthermore, the application of data-independent acquisition (DIA) mass spectrometry (MS)-based proteomics on these transgenic rice plants revealed 1,833 significantly modulated proteins in response to M. oryzae, with 219 and 410 proteins responsive to MoXYL1 and M. oryzae, respectively. Based on these results, we propose a signaling network model induced by MoXYL1 and M. oryzae. In summary, our findings highlight the crucial role of MoXYL1 in rice innate immunity against M. oryzae and its potential to enhance rice disease resistance.
Project description:Aspergillus flavus and A. oryzae represent two unique species predicted to have spent centuries in vastly different environments. A. flavus is an important opportunistic plant pathogen known for contaminating crops with the carcinogenic mycotoxin, aflatoxin and A. oryzae is a domesticated fungus used in food fermentations. Remarkably, the genomes of these two species are still nearly identical. We have used the recently sequenced genomes of A. oryzae RIB40 and A. flavus NRRL3357 along with array based comparative genome hybridization (CGH) as a tool to compare genomes across several strains of these two species. A comparison of three strains from each species by CGH revealed only 42 and 129 genes unique to A. flavus and A. oryzae, respectively. Further, only 709 genes were identified as being polymorphic between the species. Despite the high degree of similarity between these two species, correlation analysis among all data from the CGH arrays for all strains used in this study reveals a species split. However, this view of species demarcation becomes muddled when focused on only those genes for secondary metabolism.