Project description:Zoonotic influenza A viruses of avian origin can cause severe disease in individuals, or even global pandemics, and thus pose a threat to human populations. Waterfowl and shorebirds are believed to be the reservoir for all influenza A viruses, but this has recently been challenged by the identification of novel influenza A viruses in bats. The major bat influenza A virus envelope glycoprotein, haemagglutinin, does not bind the canonical influenza A virus receptor, sialic acid or any other glycan, despite its high sequence and structural homology with conventional haemagglutinins. This functionally uncharacterized plasticity of the bat influenza A virus haemagglutinin means the tropism and zoonotic potential of these viruses has not been fully determined. Here we show, using transcriptomic profiling of susceptible versus non-susceptible cells in combination with genome-wide CRISPR-Cas9 screening, that the major histocompatibility complex class II (MHC-II) human leukocyte antigen DR isotype (HLA-DR) is an essential entry determinant for bat influenza A viruses. Genetic ablation of the HLA-DR α-chain rendered cells resistant to infection by bat influenza A virus, whereas ectopic expression of the HLA-DR complex in non-susceptible cells conferred susceptibility. Expression of MHC-II from different bat species, pigs, mice or chickens also conferred susceptibility to infection. Notably, the infection of mice with bat influenza A virus resulted in robust virus replication in the upper respiratory tract, whereas mice deficient for MHC-II were resistant. Collectively, our data identify MHC-II as a crucial entry mediator for bat influenza A viruses in multiple species, which permits a broad vertebrate tropism.
Project description:Oligodendrocytes and their progenitors upregulate MHC pathways in response to inflammation, but the frequency of this phenotypic change is unknown and the features of these immune oligodendroglia are poorly defined. We generated MHC class I and II transgenic reporter mice to define their dynamics in response to inflammatory demyelination, providing a means to monitor MHC activation in diverse cell types in living mice and define their roles in aging, injury and disease.
Project description:The common marmoset (Callithrix jacchus) is a New World primate species that is highly susceptible to fatal infections caused by various strains of bacteria. We present here a first step in the molecular characterization of the common marmoset's Mhc class II genes by nucleotide sequence analysis of the polymorphic exon 2 segments. For this study, genetic material was obtained from animals bred in captivity as well as in the wild. The results demonstrate that the common marmoset has, like other primates, apparently functional Mhc-DR and -DQ regions, but the Mhc-DP region has been inactivated. At the -DR and -DQ loci, only a limited number of lineages were detected. On the basis of the number of alleles found, the -DQA and -B loci appear to be oligomorphic, whereas only a moderate degree of polymorphism was observed for two of three Mhc-DRB loci. The contact residues in the peptide-binding site of the Caja-DRB1*03 lineage members are highly conserved, whereas the -DRB*W16 lineage members show more divergence in that respect. The latter locus encodes five oligomorphic lineages whose members are not observed in any other primate species studied, suggesting rapid evolution, as illustrated by frequent exchange of polymorphic motifs. All common marmosets tested were found to share one monomorphic type of Caja-DRB*W12 allele probably encoded by a separate locus. Common marmosets apparently lack haplotype polymorphism because the number of Caja-DRB loci present per haplotype appears to be constant. Despite this, however, an unexpectedly high number of allelic combinations are observed at the haplotypic level, suggesting that Caja-DRB alleles are exchanged frequently between chromosomes by recombination, promoting an optimal distribution of limited Mhc polymorphisms among individuals of a given population. This peculiar genetic make up, in combination with the limited variability of the major histocompatability complex class II repertoire, may contribute to the common marmoset's susceptibility to particular bacterial infections.
Project description:MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) factor CIITA, which is recruited to SXY regulatory modules of MHC promoters via a DNA-binding “enhanceosome” complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of its target-gene specificity and mechanism of action remained lacking. We therefore performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-transactivated genes. In addition to classical MHCI genes, we identified novel NLRC5-targets exclusively in the H2-Q and H2-T regions of the MHCI locus, among which the best targets were found. Investigation of cells lacking the MHCII-enhanceosome factor RFX5 demonstrated its strict requirement for NLRC5 recruitment to the SXY module conserved in MHCI genes. Furthermore, patient-derived B cell lines deficient in RFX5, RFXAP, and RFXANK corroborated importance of the enhanceosome for MHCI transactivation. Although sharing similar SXY modules and common DNA-binding factors, CIITA and NLRC5 regulate distinct genes, as shown here using double-deficient Nlrc5-/-CIIta-/- mice. The identification of sequences occupied by NLRC5 in vivo allowed us to define a unique consensus motif for its recruitment, which diverges from that used by CIITA. Our results thus broaden our knowledge on transcriptional activity of NLRC5, highlighting its remarkable selectivity for genes encoding MHCI or related proteins and providing insights into the specificity of its recruitment. Analysis of Nlrc5 binding sites in T-cells