Project description:The goal of this project was to compare NGS derived transciptional profiles of primary larval CNS tumours and allograft tumours from two stages (first-T0 and forth-T3) in Drosophila that are induced by overactivation of N pathway in order to decipher if N regulates similar or different sets of genes as primary hypeplasias transition to malignant tumours. The results of this study show that overactivation of N negatively regulates genes related to neuronal differentiation processes genes as N hyperplasias become more malignant and that genes related to stress, metabolsim and immunity are upregulated
Project description:The Australian Chronic Allograft Dysfunction (AUSCAD) study is an ongoing single centre cohort study at Westmead hospital in Australia. In this section of the study, we aimed to identify biomarkers for chronic allograft dysfunction in kidney transplant recipients. Our study recruited 136 patients, each having protocol renal allograft biopsies taken pre transplantation.
Project description:The Australian Chronic Allograft Dysfunction (AUSCAD) study is an ongoing single centre cohort study at Westmead hospital in Australia. In this section of the study, we aimed to identify biomarkers for allograft rejection in kidney transplant recipients, 3-months after their transplant. Our study recruited 123 patients, each having protocol renal allograft biopsies taken 3-months post transplantation.
Project description:The goal of this project was to compare NGS derived transciptional profiles of primary larval CNS tumours and allograft tumours from two stages (first-T0 and forth-T3) in Drosophila that are induced by overactivation of two HES genes [E(spl)mγ and dpn;DM] in order to decipher if these two Hes genes control similar or different sets of genes as primary hypeplasias transition to malignant tumours. The results of this study show that overactivation of DM continues to negatively regulate neuronal differentiation genes as the DM hyperplasias become more malignant and that genes related to stress and metabolsim are upregulated
Project description:Specific early diagnosis of renal allograft rejection is gaining importance in the current trend to minimize and individualize immunosuppression. Gene expression analyses could contribute significantly by defining “molecular Banff” signatures. Several previous studies have applied transcriptomics to distinguish different classes of kidney biopsies. However, the heterogeneity of microarray platforms, clinical samples and data analysis methods complicates the identification of robust signatures for the different types and grades of rejection. To address these issues, a comparative meta-analysis was performed across five different microarray datasets of heterogeneous sample collections from two published clinical datasets and three own datasets including biopsies for clinical indications, protocol biopsies, as well as comparative samples from non-human primates (NHP). This work identified conserved gene expression signatures that can differentiate groups with different histopathological findings in both human and NHP, regardless of the technical platform used. The marker panels comprise genes that clearly support the biological changes known to be involved in allograft rejection. A characteristic dynamic expression change of genes associated with immune and kidney functions was observed across samples with different grades of CAN. In addition, differences between human and NHP rejection were essentially limited to genes reflecting interstitial fibrosis progression. This data set here comprises a small validation batch of renal allograft biopsies for clinical indications plus control normal kidney samples from patients at Hôpital Tenon, Paris (second batch) that complements the first batch of 60 samples. We used microarrays to identify different gene expression signatures of renal allograft biopsies that can classify them according to different types of allograft rejection or CAN. Keywords: disease state analysis 4 renal allograft core biopsies for clinical indications with different histopathological diagnoses according to Banff'97 criteria and 2 normal kidney samples.
Project description:Specific early diagnosis of renal allograft rejection is gaining importance in the current trend to minimize and individualize immunosuppression. Gene expression analyses could contribute significantly by defining “molecular Banff” signatures. Several previous studies have applied transcriptomics to distinguish different classes of kidney biopsies. However, the heterogeneity of microarray platforms, clinical samples and data analysis methods complicates the identification of robust signatures for the different types and grades of rejection. To address these issues, a comparative meta-analysis was performed across five different microarray datasets of heterogeneous sample collections from two published clinical datasets and three own datasets including biopsies for clinical indications, protocol biopsies, as well as comparative samples from non-human primates (NHP). This work identified conserved gene expression signatures that can differentiate groups with different histopathological findings in both human and NHP, regardless of the technical platform used. The marker panels comprise genes that clearly support the biological changes known to be involved in allograft rejection. A characteristic dynamic expression change of genes associated with immune and kidney functions was observed across samples with different grades of CAN. In addition, differences between human and NHP rejection were essentially limited to genes reflecting interstitial fibrosis progression. This data set here comprises a small validation batch of renal allograft biopsies for clinical indications plus control normal kidney samples from patients at Hôpital Tenon, Paris (second batch) that complements the first batch of 60 samples. We used microarrays to identify different gene expression signatures of renal allograft biopsies that can classify them according to different types of allograft rejection or CAN. Keywords: disease state analysis
Project description:Specific early diagnosis of renal allograft rejection is gaining importance in the current trend to minimize and individualize immunosuppression. Gene expression analyses could contribute significantly by defining “molecular Banff” signatures. Several previous studies have applied transcriptomics to distinguish different classes of kidney biopsies. However, the heterogeneity of microarray platforms, clinical samples and data analysis methods complicates the identification of robust signatures for the different types and grades of rejection. To address these issues, a comparative meta-analysis was performed across five different microarray datasets of heterogeneous sample collections from two published clinical datasets and three own datasets including biopsies for clinical indications, protocol biopsies, as well as comparative samples from non-human primates (NHP). This work identified conserved gene expression signatures that can differentiate groups with different histopathological findings in both human and NHP, regardless of the technical platform used. The marker panels comprise genes that clearly support the biological changes known to be involved in allograft rejection. A characteristic dynamic expression change of genes associated with immune and kidney functions was observed across samples with different grades of CAN. In addition, differences between human and NHP rejection were essentially limited to genes reflecting interstitial fibrosis progression. This data set comprises all renal allograft biopsies for clinical indications from patients at Hôpital Tenon, Paris (February 2003 until September 2004) and few respective patients from Hôpital Bicêtre, Paris, Hôpital Pellegrin, Bordeaux, and Hôpital Dupuytren, Limoges, plus control normal kidney samples from Hôpital Tenon, Paris, France (first batch). We used microarrays to identify different gene expression signatures of renal allograft biopsies that can classify them according to different types of allograft rejection or CAN. Keywords: disease state analysis
Project description:Specific early diagnosis of renal allograft rejection is gaining importance in the current trend to minimize and individualize immunosuppression. Gene expression analyses could contribute significantly by defining âmolecular Banffâ signatures. Several previous studies have applied transcriptomics to distinguish different classes of kidney biopsies. However, the heterogeneity of microarray platforms, clinical samples and data analysis methods complicates the identification of robust signatures for the different types and grades of rejection. To address these issues, a comparative meta-analysis was performed across five different microarray datasets of heterogeneous sample collections from two published clinical datasets and three own datasets including biopsies for clinical indications, protocol biopsies, as well as comparative samples from non-human primates (NHP). This work identified conserved gene expression signatures that can differentiate groups with different histopathological findings in both human and NHP, regardless of the technical platform used. The marker panels comprise genes that clearly support the biological changes known to be involved in allograft rejection. A characteristic dynamic expression change of genes associated with immune and kidney functions was observed across samples with different grades of CAN. In addition, differences between human and NHP rejection were essentially limited to genes reflecting interstitial fibrosis progression. This data set comprises all renal allograft biopsies for clinical indications from patients at Hôpital Tenon, Paris (February 2003 until September 2004) and few respective patients from Hôpital Bicêtre, Paris, Hôpital Pellegrin, Bordeaux, and Hôpital Dupuytren, Limoges, plus control normal kidney samples from Hôpital Tenon, Paris, France (first batch). We used microarrays to identify different gene expression signatures of renal allograft biopsies that can classify them according to different types of allograft rejection or CAN. Experiment Overall Design: 47 renal allograft core biopsies for clinical indications with different histopathological diagnoses according to BANFF'97 criteria, and 13 normal kidney samples as controls.
Project description:Specific early diagnosis of renal allograft rejection is gaining importance in the current trend to minimize and individualize immunosuppression. Gene expression analyses could contribute significantly by defining “molecular Banff” signatures. Several previous studies have applied transcriptomics to distinguish different classes of kidney biopsies. However, the heterogeneity of microarray platforms, clinical samples and data analysis methods complicates the identification of robust signatures for the different types and grades of rejection. To address these issues, a comparative meta-analysis was performed across five different microarray datasets of heterogeneous sample collections from two published clinical datasets and three own datasets including biopsies for clinical indications, protocol biopsies, as well as comparative samples from non-human primates (NHP). This work identified conserved gene expression signatures that can differentiate groups with different histopathological findings in both human and NHP, regardless of the technical platform used. The marker panels comprise genes that clearly support the biological changes known to be involved in allograft rejection. A characteristic dynamic expression change of genes associated with immune and kidney functions was observed across samples with different grades of CAN. In addition, differences between human and NHP rejection were essentially limited to genes reflecting interstitial fibrosis progression. This data set comprises all renal allograft biopsies for clinical indications from patients at Hôpital Tenon, Paris (February 2003 until September 2004) and few respective patients from Hôpital Bicêtre, Paris, Hôpital Pellegrin, Bordeaux, and Hôpital Dupuytren, Limoges, plus control normal kidney samples from Hôpital Tenon, Paris, France (first batch). We used microarrays to identify different gene expression signatures of renal allograft biopsies that can classify them according to different types of allograft rejection or CAN. Keywords: disease state analysis Keywords: Expression profiling by array