Project description:The goals of this study are to compare NGS-derived transcriptome profiling (RNA-seq) of Pectobacterium upon treatment of polyphenol compound.
Project description:Pectobacterium are Gram-negative rods of the family Pectobacteriaceae. They are the causative agent of soft rot diseases of crops and ornamental plants. However, their virulence mechanisms are not yet fully elucidated. Membrane vesicles (MVs) are universally released by bacteria and are be-lieved to play an important role in pathogenicity, and survival of bacteria in the environment. Our study investigates the role of MVs in the virulence of Pectobacterium. The results indicate that the morphology and yields of MVs depend on medium composition. In polygalacturonic acid (PGA) supplemented media, Pectobacterium produce MVs of a larger size (100-300 nm) apart of vesicles below 100 nm. Proteomic analyses revealed the presence of pectate degrading enzymes in MVs. The pectate plate test and enzymatic assay proved that those enzymes are active and able to de-grade pectates. What is more, pathogenicity test indicated that MVs derived from Pectobacterium were able to induce maceration of Zantedeschia sp. leaves. We also show that MVs of β-lactamase producing strains were able to suppress ampicillin activity and permit the growth of susceptible bacteria. Those findings indicate that MVs of Pectobacterium play an important role in host-pathogen interactions and niche competition with other bacteria. Our research also sheds some light on the mechanism of MVs production. We demonstrate that Pectobacterium strains, which overexpress the green fluorescence protein (GFP), produce more MVs than wild type strains. Moreover, proteomic analysis revealed that GFP was present in MVs. Therefore, we demonstrate that protein sequestration into MVs is not limited strictly to periplasmic proteins and is a common occurrence. Our research highlights the importance of MVs production as a mechanism of cargo delivery in Pectobacterium and an alternative secretion system.
Project description:Whole genome analysis of gene expression by Pectobacterium atrosepticum strain SCRI1043 wildtype and its relA, expI and rpoS deletion mutants when grown to exponential and stationary phase in PMB media. The data is further described in Bowden et al (2013) Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp. Molecular Microbiology. DOI: 10.1111/mmi.12369
Project description:Whole genome analysis of gene expression by Pectobacterium atrosepticum strain SCRI1043 wildtype and its relA, expI and rpoS deletion mutants when grown to exponential and stationary phase in PMB media. The data is further described in Bowden et al (2013) Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp. Molecular Microbiology. DOI: 10.1111/mmi.12369 A 24 chip study using total RNA recovered from three separate wild-type cultures of Pectobacterium atrosepticum SCRI1043 and three separate cultures from three single mutant strains of SCRI1043 possessing deletions within relA (ECA3569), expI (ECA0105) or rpoS (ECA3530) when grown in Pel Minimal Broth (PMB) media to log-phase (6h) or early stationary phase (14h) growth. Each chip measures the expression level of 4,472 genes from Pectobacterium atrosepticum SCRI1043 with eight 60-mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.
Project description:Genome-wide in planta determination of the quorum sensing regulon in Pectobacterium atrosepticum, through gene expression analysis of ExpI mutants using Agilent custom microarrays.
Project description:Transcription profiling of Nicotinan benthamiana in response to Pectobacterium carotovorum WPP14 and Pseudomonas syringae pv. tomato DC3000
Project description:This project aimed to investigate the transcriptomic differences between a Pectobacterium carotovorum wild-type strain (RC5297) and a derivative in which a restriction-modification system, termed PcaRCI, is knocked out. The aim was to identify genes whose expression might be regulated through methylation by the methyltransferase of the RM system.