Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are short (19â25 nucleotides) non-coding RNA molecules that have large-scale regulatory effects on development and on stress responses in plants.The objective of this study is to investigate the transcriptional profile of miRNAs and other small non-coding RNAs in Verticilliumâinoculated cotton roots. Four small RNA libraries were constructed from mocked and infected roots of two cotton cultured species which are with different Verticillium tolerance (âHai-7124â, Gossypium barbadense L., a Verticillium-tolerant cultivar, and âYi-11â, Gossypium hirsutum L. a Verticillium-sensitive cultivar). The length distribution of obtained small RNA pools was significantly different among libraries. A total of 215 conserved miRNA families were identified in the two cotton species, of them 14 are novel. There were >65 families with different expression between two libraries. We also identified two ta-siRNAs and thousands of endogenous siRNA candidates, and hundred of them exhibited altered expression after inoculation of Verticillium. The profiling of these miRNAs and other small non-coding RNAs lay the foundation for further understanding of small RNAs function in the regulation of Verticillium defence responses in cotton roots.
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are short (19â25 nucleotides) non-coding RNA molecules that have large-scale regulatory effects on development and on stress responses in plants.The objective of this study is to investigate the transcriptional profile of miRNAs and other small non-coding RNAs in Verticilliumâinoculated cotton roots. Four small RNA libraries were constructed from mocked and infected roots of two cotton cultured species which are with different Verticillium tolerance (âHai-7124â, Gossypium barbadense L., a Verticillium-tolerant cultivar, and âYi-11â, Gossypium hirsutum L. a Verticillium-sensitive cultivar). The length distribution of obtained small RNA pools was significantly different among libraries. A total of 215 conserved miRNA families were identified in the two cotton species, of them 14 are novel. There were >65 families with different expression between two libraries. We also identified two ta-siRNAs and thousands of endogenous siRNA candidates, and hundred of them exhibited altered expression after inoculation of Verticillium. The profiling of these miRNAs and other small non-coding RNAs lay the foundation for further understanding of small RNAs function in the regulation of Verticillium defence responses in cotton roots. Examination of 2 different traetments in 2 cotton types.
Project description:Plant roots secrete secondary metabolites to sense the enviroment around them. Among them, terpenes play a prominent role. Terpenes can have either fungistatic or fungicide action. However, their exact role in plant-host interactions is not fully understood. Verticillium longisporum is a soilborne pathogen causing disease in Brasicacae plants. In this project we investigated the transcriptomic changes of this species upon exposure to the β-pinene monoterpene in different time points 0hpi, 8hpi, 24hpi and 24hpi.
Project description:Genomic surveys of yeast hybrid species isolated from the wild and from human-related environment, aimed at the reconstruction of the natural evolution of Saccharomyces spp. evolution
Project description:Identification of genes differentially expressed in roots of Arabidopsis Col-0 and ndr1-1 mutants 48 h post inoculation with the fungal pathogen Verticillium longisporum.
Project description:We have performed small RNA sequencing in the nematodes Caenorhabditis elegans, C. briggsae, C. remanei and Pristionchus pacificus, which have diverged up to 400 million years ago, to establish the repertoire and evolutionary dynamics of miRNAs in these species. In addition to previously known miRNA genes from C. elegans and C. briggsae we demonstrate expression of many of their homologs in C. remanei and P. pacificus, and identified in total more than 100 novel expressed miRNA genes, the majority of which belong to P. pacificus. More than half of all identified miRNA genes were found to be conserved at the seed level in all four nematode species, whereas only a few miRNAs appear to be species-specific. In our compendium of miRNAs we observed evidence for known mechanisms of miRNA evolution, including antisense transcription and arm switching, as well as miRNA family expansion through gene duplication. In addition, we identified a novel mode of miRNA evolution, termed ‘hairpin shifting’, in which an alternative hairpin is formed with up- or downstream sequences, leading to shifting of the hairpin and creation of novel miRNA* species. Finally, we identified 21U-RNAs in all four nematodes, including P. pacificus, where the upstream 21U-RNA motif is more diverged. However, the genomic distribution of 21U-RNA clusters in P. pacificus appears more scattered throughout the genome as compared to C. elegans. The identification and systematic analysis of small RNA repertoire in four nematode species described here provides a valuable resource for understanding the evolutionary dynamics of miRNA-mediated gene regulation.