Project description:Lichen thalli harbor complex fungal communities (mycobiomes) of species with divergent trophic and ecological strategies. The complexity and diversity of lichen mycobiomes are still largely unknown, despite surveys combining culture-based methods and high-throughput sequencing (HTS). The results of such surveys are strongly influenced by the barcode locus chosen, its sensitivity in discriminating taxa, and the depth to which public sequence repositories cover the phylogenetic spectrum of fungi. Here, we use HTS of the internal transcribed spacer 2 (ITS2) to assess the taxonomic composition and diversity of a well-characterized, alpine rock lichen community that includes thalli symptomatically infected by lichenicolous fungi as well as asymptomatic thalli. Taxa belonging to the order Chaetothyriales are the major components of the observed lichen mycobiomes. We predict sequences representative of lichenicolous fungi characterized morphologically and assess their asymptomatic presence in lichen thalli. We demonstrated the limitations of metabarcoding in fungi and show how the estimation of species diversity widely differs when ITS1 or ITS2 are used as barcode, and particularly biases the detection of Basidiomycota. The complementary analysis of both ITS1 and ITS2 loci is therefore required to reliably estimate the diversity of lichen mycobiomes.
Project description:Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.
Project description:Shifts in climate along elevation gradients structure mycobiont-photobiont associations in lichens. We obtained mycobiont (lecanoroid Lecanoraceae) and photobiont (Trebouxia alga) DNA sequences from 89 lichen thalli collected in Bolivia from a ca. 4,700 m elevation gradient encompassing diverse natural communities and environmental conditions. The molecular dataset included six mycobiont loci (ITS, nrLSU, mtSSU, RPB1, RPB2, and MCM7) and two photobiont loci (ITS, rbcL); we designed new primers to amplify Lecanoraceae RPB1 and RPB2 with a nested PCR approach. Mycobionts belonged to Lecanora s.lat., Bryonora, Myriolecis, Protoparmeliopsis, the "Lecanora" polytropa group, and the "L." saligna group. All of these clades except for Lecanora s.lat. occurred only at high elevation. No single species of Lecanoraceae was present along the entire elevation gradient, and individual clades were restricted to a subset of the gradient. Most Lecanoraceae samples represent species which have not previously been sequenced. Trebouxia clade C, which has not previously been recorded in association with species of Lecanoraceae, predominates at low- to mid-elevation sites. Photobionts from Trebouxia clade I occur at the upper extent of mid-elevation forest and at some open, high-elevation sites, while Trebouxia clades A and S dominate open habitats at high elevation. We did not find Trebouxia clade D. Several putative new species were found in Trebouxia clades A, C, and I. These included one putative species in clade A associated with Myriolecis species growing on limestone at high elevation and a novel lineage sister to the rest of clade C associated with Lecanora on bark in low-elevation grassland. Three different kinds of photobiont switching were observed, with certain mycobiont species associating with Trebouxia from different major clades, species within a major clade, or haplotypes within a species. Lecanoraceae mycobionts and Trebouxia photobionts exhibit species turnover along the elevation gradient, but with each partner having a different elevation threshold at which the community shifts completely. A phylogenetically defined sampling of a single diverse family of lichen-forming fungi may be sufficient to document regional patterns of Trebouxia diversity and distribution.
Project description:gene expression profiling in different zones along the gradient of the growing maize leaf balde aover a time course of dirunal cycle and carbon starvation by extension of the night Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night, and in non-photosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades a defined developmental gradient facilitates analyses in the cell division, elongation and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn and 6, 14 and 24 hours into an extended night, and tracked whole leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose recovers partially between 14 and 24 h into the extended night in the growth zones but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in sucrose. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night and then partially recover indicating that growth processes are determined by local carbon status. The level of sucrose-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:sucrose ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones.
2016-08-24 | GSE85963 | GEO
Project description:Exploring fungal and algal diversity patterns in lichens
Project description:gene expression profiling in different zones along the gradient of the growing maize leaf balde aover a time course of dirunal cycle and carbon starvation by extension of the night Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night, and in non-photosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades a defined developmental gradient facilitates analyses in the cell division, elongation and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn and 6, 14 and 24 hours into an extended night, and tracked whole leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose recovers partially between 14 and 24 h into the extended night in the growth zones but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in sucrose. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night and then partially recover indicating that growth processes are determined by local carbon status. The level of sucrose-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:sucrose ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones. 3 repliucates per time point and leaf region, each pooled form 5 indiviual plants
Project description:Although not all sex-dependent gene expression is adaptive, it is likely an important genomic mechanism that allows each sex to independently adapt to environmental changes. Among Drosophila species, sex-biased genes display remarkably consistent evolutionary patterns; male-biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex-differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex-biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex-specific selection and the evolution of sex-biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11,631 genes across eight populations revealed strong sex differences in the frequency, mode, and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population-specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male-biased genes, there was no overrepresentation of X-linked genes in males. By contrast, X-linked divergence was elevated in females, especially for female biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in D. simulans and D. melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro- and micro-ecological spatial scales.