Project description:Purpose: The goal of this study is compare the effect of phbC gene in curdlan synthesis in Agrobacterium sp. CGMCC 11546. methods: The transcriptional and metabolomics analysis the function of phbC in Agrobacterium sp. CGMCC 11546. Results:The transcriptional and metabolomics showed that the decrease of curdlan production in the ΔphbC mutants may be caused by the insufficient supply of energy ATP conclusion:phbC play an important role in curdlan synthesis in Agrobacterium sp. CGMCC 11546
Project description:Purpose: The goal of this study is compare the effect of glnA gene in curdlan synthesis in Agrobacterium sp. CGMCC 11546. methods: The transcriptional and metabolomics analysis the function of glnA in Agrobacterium sp. CGMCC 11546. Results: The transcriptional and metabolomics showed that the decrease of curdlan production in the ΔglnA mutants may be caused by the insufficient supply of energy ATP conclusion: glnA play an important role in curdlan synthesis in Agrobacterium sp. CGMCC 11546
Project description:Purpose: The goal of this study is compare the effect of MetH and MetZ gene in curdlan synthesis in Agrobacterium sp. CGMCC 11546. methods: The transcriptional and metabolomics analysis the function of metH and metZ in Agrobacterium sp. CGMCC 11546. Results: The transcriptional and metabolomics showed that the decrease of curdlan production in the ΔmetH and ΔmetZ mutants may be caused by the insufficient supply of energy ATP conclusion: MetH and MetZ play an important role in curdlan synthesis in Agrobacterium sp. CGMCC 11546
Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed.
Project description:Welan gum is mainly produced by Sphingomonas sp. ATCC 31555 and has broad applications in industry such as that in cement production. Both carbon and nitrogen sources are essential for welan production. However, how nitrogen sources affect the metabolism and gene transcription of welan remains elusive. Here, we used next-generation sequencing RNA-seq to analyze the transcriptome of Sphingomonas sp. ATCC 31555 in the presence of inorganic or organic nitrogen sources. Enriched gene expression and pathway analysis suggest that organic nitrogen sources significantly enhanced the expression of genes in central metabolic pathways of Sphingomonas sp. ATCC 31555 and those critical for welan synthesis compared to that observed using inorganic nitrogen sources. The present study improves our understanding of the molecular mechanism underlying the use of nitrogen in welan synthesis in Sphingomonas sp., as well as provides an important transcriptome resource for Sphingomonas sp. in relation to nitrogen sources.
Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed. A two chip study using total RNA recovered from wild-type and motile strains of Sphingomonas. sp A1 grown in 0.5% alginate medium.