Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies.
Ontology highlight
ABSTRACT: Characterising and quantifying the genome size expansion in wood-white (Leptidea) butterflies. This study includes Genome sequencing of Leptidea sinapis and resequencing of Leptidea reali and Leptidea juvernica.
Project description:Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643?Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72?Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths.
Project description:In temperate latitudes, many insects enter diapause (dormancy) during the cold season, a period during which developmental processes come to a standstill. The wood white (Leptidea sinapis) is a butterfly species distributed across western Eurasia that shows photoperiod-induced diapause with variation in critical day-length across populations at different latitudes. We assembled transcriptomes and estimated gene expression levels at different developmental stages in experimentally induced directly developing and diapausing cohorts of a single Swedish population of L. sinapis to investigate the regulatory mechanisms underpinning diapause initiation. Different day lengths resulted in expression changes of developmental genes and affected the rate of accumulation of signal molecules, suggesting that diapause induction might be controlled by increased activity of monoamine neurotransmitters in larvae reared under short-day light conditions. Expression differences between light treatment groups of two monoamine regulator genes (DDC and ST) were observed already in instar III larvae. Once developmental pathways were irreversibly set at instar V, a handful of genes related to dopamine production were differentially expressed leading to a significant decrease in expression of global metabolic genes and increase in expression of genes related to fatty acid synthesis and sequestration. This is in line with a time-dependent (hour-glass) model of diapause regulation where a gradual shift in the concentration of monoamine neurotransmitters and their metabolites during development of larvae under short-day conditions leads to increased storage of fat, decreased energy expenditures, and ultimately developmental stasis at the pupal stage.
Project description:In the fall, Eastern North American monarch butterflies (Danaus plexippus) undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state. Here we show that increasing juvenile hormone activity to induce summer-like reproductive development in fall migrants does not alter directional flight behavior or its time-compensated orientation, as monitored in a flight simulator. Reproductive summer butterflies, in contrast, uniformly fail to exhibit directional, oriented flight. To define molecular correlates of behavioral state, we used microarray analysis of 9417 unique cDNA sequences. Gene expression profiles reveal a suite of 40 genes whose differential expression in brain correlates with oriented flight behavior in individual migrants, independent of juvenile hormone activity, thereby separating molecularly fall migrants from summer butterflies. Intriguing genes that are differentially regulated include the clock gene vrille and the locomotion-relevant tyramine beta hydroxylase gene. In addition, several differentially regulated genes (37.5% of total) are not annotated, suggesting unique functions associated with oriented flight behavior. We also identified 23 juvenile hormone-dependent genes in brain, which separate reproductive from non-reproductive monarchs; genes involved in longevity, fatty acid metabolism, and innate immunity are upregulated in non-reproductive (juvenile-hormone deficient) migrants. The results link key behavioral traits with gene expression profiles in brain that differentiate migratory from summer butterflies and thus show that seasonal changes in genomic function help define the migratory state. A total of 40 monarch butterflies were used for the microarray analysis. Of the 40, 10 (5 male/5 female) were summer butterflies (Designated as S) and 30 were fall butterflies. The fall butterflies were further divided into three groups: 10 (5 male/5 female) were untreated (F); 10 (5 male/5 female) were treated with methoprene (M), which is a juvenile hormone analog and induces the development of reproductive organs in migrant butterflies; and 10 (5 male/5 female) were treated with vehicle only (V). We collected total brain RNA from each of the 40 butterflies. The brain RNAs were amplified and then used to probe a custom Nimblegen array that was designed to analyze the 9,417 unique cDNA sequences established in our published EST library (http://titan.biotec.uiuc.edu/cgi-bin/ESTWebsite/estima_start?seqSet=butterfly). Our main interest is to find genes involved in migration. This includes genes regulating oriented flight behavior of the butterfly and genes that regulate reproductive status. To identify these genes, we approached the microarray data in two ways. First, we identified the potential genes involved in oriented flight behavior using the following strategy. We compared the summer group to each of the three fall groups (untreated, methoprene-treated, and vehicle-treated) for males and for females, and looked for gene regulation patterns common among the three comparisons for each sex. Because the comparisons were done separately for males and females, and our behavioral data did not show significant sex differences in flight orientation, we focused on the common differentially regulated genes that were shared between males and females. Accordingly, we identified 40 cDNAs that were differentially regulated between summer butterflies and fall migrants, irrespective of sex. Second, we looked for the juvenile hormone-response genes. Again, we performed sex-specific statistical analyses, and compared the summer and the fall groups, and the methoprene-treated and vehicle-treated migrants. We then screened for shared genes between the two groups for each sex. We next examined cDNAs that were differentially regulated in both males and females, to determine juvenile hormone-regulated genes involved in more global processes (e.g., longevity and fatty acid metabolism) that would not be expected to be sex-specific. We identified 23 putative juvenile hormone-response genes that were common between males and females.
Project description:In the fall, Eastern North American monarch butterflies (Danaus plexippus) undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state. Here we show that increasing juvenile hormone activity to induce summer-like reproductive development in fall migrants does not alter directional flight behavior or its time-compensated orientation, as monitored in a flight simulator. Reproductive summer butterflies, in contrast, uniformly fail to exhibit directional, oriented flight. To define molecular correlates of behavioral state, we used microarray analysis of 9417 unique cDNA sequences. Gene expression profiles reveal a suite of 40 genes whose differential expression in brain correlates with oriented flight behavior in individual migrants, independent of juvenile hormone activity, thereby separating molecularly fall migrants from summer butterflies. Intriguing genes that are differentially regulated include the clock gene vrille and the locomotion-relevant tyramine beta hydroxylase gene. In addition, several differentially regulated genes (37.5% of total) are not annotated, suggesting unique functions associated with oriented flight behavior. We also identified 23 juvenile hormone-dependent genes in brain, which separate reproductive from non-reproductive monarchs; genes involved in longevity, fatty acid metabolism, and innate immunity are upregulated in non-reproductive (juvenile-hormone deficient) migrants. The results link key behavioral traits with gene expression profiles in brain that differentiate migratory from summer butterflies and thus show that seasonal changes in genomic function help define the migratory state.