Project description:We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.
Project description:Small RNA sequences from Arabidopsis lyrata leaves, as isolated from a single sample of rosette leaf tissue. These data were analyzed to 1) examine microRNA processing accuracy in A. lyrata and 2) to examine patterns of 24nt siRNA accumulation in A. lyrata.
Project description:Small RNA sequences from Arabidopsis lyrata flowering tissues, as isolated from flowering tissues of two biological replicates. These data were analyzed to 1) discover new micoRNAs in A. lyrata 2) examine microRNA processing accuary in A. lyrata and 3) to examine patterns of 24nt siRNA accumulation in A. lyrata.