Project description:Here, we report the draft genome sequence of crude oil-degrading Pseudomonas aeruginosa strain N002, isolated from a crude oil-polluted soil sample from Geleky, Assam, India. Multiple genes potentially involved in crude oil degradation were identified.
Project description:Here, we report the 2.6 Mb draft genome sequence of hydrocarbon-degrading Staphylococcus saprophyticus strain CNV2, isolated from oil-contaminated soil in Guwahati, India. CNV2 contains 2,545 coding sequences and has a G+C content of 33.2%. This is the first report of the genome sequence of an S. saprophyticus adapted to an oil-contaminated environment.
Project description:We report here the 4.57-Mb draft genome sequence of hydrocarbon-degrading Enterobacter cloacae strain S1:CND1 isolated from oil-contaminated soil in Guwahati, India. S1:CND1 contains 4,205 coding sequences and has a G+C content of 57.45%. This is the first report of the genome sequence of an E. cloacae adapted to an oil-contaminated environment.
Project description:The Galicia seashore, in northwestern Spain, was one of the shorelines affected by the Prestige oil spill in November 2002. The diversity of autochthonous Pseudomonas populations present at two beaches (Carnota municipality) was analyzed using culture-independent and culture-dependent methods. The first analysis involved the screening of an rpoD gene library. The second involved the isolation of 94 Pseudomonas strains that were able to grow on selective media by direct plating or after serial enrichments on several carbon sources: biphenyl, gentisate, hexadecane, methylnaphthalene, naphthalene, phenanthrene, salicylate, xylene, and succinate. Eight denitrifying Pseudomonas strains were also isolated by their ability to grow anaerobically with nitrate. The calculated coverage index for Pseudomonas species was 89% when clones and isolates were considered together, and there were 29 phylospecies detected. The most abundant were members of the species P. stutzeri, P. putida, P. anguilliseptica, and P. oleovorans. Thirty-one isolates could not be identified at the species level and were considered representatives of 16 putative novel Pseudomonas species. One isolate was considered representative of a novel P. stutzeri genomovar. Concordant results were obtained when the diversities of the cloned DNA library and the cultured strains were compared. The clone library obtained by the rpoD PCR method was a useful tool for evaluating Pseudomonas communities and also for microdiversity studies of Pseudomonas populations.
Project description:The widespread use and consumption of crude oil draws the public's attention to the fate of petroleum hydrocarbons in the environment, as they can permeate the soil environment in an uncontrollable manner. Contamination of soils with petroleum products, including diesel oil (DO), can cause changes in the microbiological soil properties. The effect of diesel oil on the functional diversity of fungi was tested in a model experiment during 270 days. Fungi were isolated from soil and identified. The functional diversity of fungal communities was also determined. Fungi were identified with the MALDI-TOF method, while the functional diversity was determined using FF-plates made by Biolog®, with 95 carbon sources. Moreover, the diesel oil degradation dynamics was assessed. The research showed that soil contaminated with diesel oil is characterized by a higher activity of oxireductases and a higher number of fungi than soil not exposed to the pressure of this product. The DO pollution has an adverse effect on the diversity of fungal community. This is proved by significantly lower values of the Average Well-Color Development, substrates Richness (R) and Shannon-Weaver (H) indices at day 270 after contamination. The consequences of DO affecting soil not submitted to remediation are persistent. After 270 days, only 64% of four-ringed, 28% of five-ringed, 21% of 2-3-ringed and 16% of six-ringed PAHs underwent degradation. The lasting effect of DO on communities of fungi led to a decrease in their functional diversity. The assessment of the response of fungi to DO pollution made on the basis of the development of colonies on Petri dishes [Colony Development (CD) and Eco-physiological Diversity (EP) indices] is consistent with the analysis based on the FF MicroPlate system by Biolog®. Thus, a combination of the FF MicroPlate system by Biolog® with the simultaneous calculation of CD and EP indices alongside the concurrent determination of the content of PAHs and activity of oxireductases provides an opportunity to achieve relatively complete characterization of the consequences of a long-term impact of diesel oil on soil fungi.
Project description:A hydrocarbon-degrading strain was isolated from a petroleum oil-contaminated site which was identified on the basis of 16S rDNA gene sequencing as a member of the genus Serratia. The isolate reduced surface tension of petroleum oil supplemented medium by 48.35% with respect to control after 7 days of treatment. Fluorescence microscopy revealed that its chemotaxis was towards hydrocarbon. The isolate degraded 87.54 and 85.48% of diesel and kerosene in liquid culture, respectively, after 28 day incubation at 37 ± 2 °C. The ex situ pilot scale bioremediation experiment in which artificially contaminated soil (10 and 20% v/w kerosene) was treated for 7 days showed a germination rate of Vigna radiate seeds of 52% and 72%, respectively. Interestingly, a germination rate of 31% was obtained with the heavily contaminated soil samples collected from the oil spillage site after 20 days of bioremediation treatment. The presence of υCH3 (asymmetric stretching), υC=C (stretch), and υC-C (stretch) in the crude biosurfactant produced by the isolate was revealed by FTIR analysis, and emulsification index (E 24) was found 60 and 56.6%, respectively, against diesel and kerosene oil. The non-cytotoxicity nature of the biosurfactant also supports its potential application in field trial.