Project description:Analysis of microbial community composition in arctic tundra and boreal forest soils using serial analysis of ribosomal sequence tags (SARST). Keywords: other
Project description:Cropping soils vary in extent of natural suppression of soil-borne plant diseases. However, it is unknown whether similar variation occurs across pastoral agricultural systems. We examined soil microbial community properties known to be associated with disease suppression across 50 pastoral fields varying in management intensity. The composition and abundance of the disease-suppressive community were assessed from both taxonomic and functional perspectives.
2018-03-30 | GSE112489 | GEO
Project description:Microbial community across manure treatments and aggregate fractions
Project description:Soil water repellency (SWR) (i.e. soil hydrophobicity or decreased soil wettability) is a major cause of global soil degradation and a key agricultural concern. This metabolomics data will support the larger effort measuring soil water repellency and soil aggregate formation caused by microbial community composition through a combination of the standard drop penetration test, transmission electron microscopy characterization and physico-chemical analyses of soil aggregates at 6 timepoints. Model soils created from clay/sand mixtures as described in Kallenbach et al. (2016, Nature Communications) with sterile, ground pine litter as a carbon/nitrogen source were inoculated with 15 different microbial communities known to have significantly different compositions based on 16S rRNA sequencing. This data will allow assessment of the direct influence of microbial community composition on soil water repellency and soil aggregate stability, which are main causes of soil degradation.
The work (proposal:https://doi.org/10.46936/10.25585/60001346) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
Project description:The fate of the carbon stocked in permafrost soils following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but their composition and functional potential in permafrost soils are largely unknown. Here, a 2 m deep permafrost and its overlying active layer soil were subjected to metagenome sequencing, quantitative PCR, and microarray analyses. The active layer soil and 2 m permafrost soil microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two soils also possessed a highly similar spectrum of functional genes, especially when compared to other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both soils in the metagenomic libraries and some (e.g. pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2 m permafrost soil showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated and showed that the whole community genome amplification technique used caused large representational biases in the metagenomic libraries. This study described for the first time the detailed functional potential of permafrost-affected soils and detected several genes and microorganisms that could have crucial importance following permafrost thaw. A 2m deep permafrost sample and it overlying active layer were sampled and their metagenome analysed. For microarray analyses, 8 other soil samples from the same region were used for comparison purposes.
Project description:The fate of the carbon stocked in permafrost soils following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but their composition and functional potential in permafrost soils are largely unknown. Here, a 2 m deep permafrost and its overlying active layer soil were subjected to metagenome sequencing, quantitative PCR, and microarray analyses. The active layer soil and 2 m permafrost soil microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two soils also possessed a highly similar spectrum of functional genes, especially when compared to other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both soils in the metagenomic libraries and some (e.g. pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2 m permafrost soil showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated and showed that the whole community genome amplification technique used caused large representational biases in the metagenomic libraries. This study described for the first time the detailed functional potential of permafrost-affected soils and detected several genes and microorganisms that could have crucial importance following permafrost thaw.
Project description:Comparison of hexachlorocyclohexane (HCH) contaminated soils from Spain with a community-specific microarray. These results are being submitted for publication and represent the first use of microarrays for analysis of soil DNA and the first community-specific microarray design. Keywords: other
Project description:In response to environmental stresses such as starvation, many bacteria facultatively aggregate into multicellular structures that can attain new metabolic functions and behaviors. Despite the ubiquity and relevance of this form of collective behavior, we lack an understanding of how the spatiotemporal dynamics of aggregate development emerge from cellular physiology. Here, we study the development of multicellular aggregates by the marine bacterium Vibrio splendidus when it grows on the polysaccharide alginate. Transcriptional profiling was used to define genes differentially expressed at stages of aggregate morphogenesis, and between cell sub-populations, which included genes encoding a putative type IV pillus and carbon storage granules. Combined with measurements of in situ cellular physiology, we show that the coupling between growth and spatial gradient formation leads to the emergence of a complex lifecycle.
Project description:Comparison of hexachlorocyclohexane (HCH) contaminated soils from Spain with a community-specific microarray. These results are being submitted for publication and represent the first use of microarrays for analysis of soil DNA and the first community-specific microarray design. Keywords: other