ABSTRACT: Phylogenetic relationships of Mediterranean black corals (Cnidaria: Anthozoa: Hexacorallia) upends the classification of the Order Antipatharia
Project description:The process of calcium carbonate biomineralization has arisen multiple times during metazoan evolution. In the phylum Cnidaria, biomineralization has mostly been studied in the subclass Hexacorallia (i.e. stony corals) in comparison to the subclass Octocorallia (i.e. red corals); the two diverged approximately 600 million years ago. The precious Mediterranean red coral, Corallium rubrum, is an octocorallian species, which produces two distinct high-magnesium calcite biominerals, the axial skeleton and the sclerites. In order to gain insight into the red coral biomineralization process and cnidarian biomineralization evolution, we studied the protein repertoire forming the organic matrix (OM) of its two biominerals. We combined High-Resolution Mass Spectrometry and transcriptome analysis to study the OM composition of the axial skeleton and the sclerites. We identified a total of 102 OM proteins, 52 are shared between the two red coral biominerals with scleritin being the most abundant protein in each fraction. Contrary to reef building corals, the red coral is collagen-rich (10 collagen-like proteins). Agrin-like glycoproteins and proteins with sugar-binding domains are also predominant. Twenty-seven and 23 proteins were uniquely assigned to the axial skeleton and the sclerites, respectively. Their inferred regulatory function suggests that the difference between the two biominerals rather relies on the modeling of the matrix network than on specific structural components. At least one OM component appears to have been horizontally transferred from prokaryotes early during Octocorallia evolution. Our results support the view that calcification of the red coral axial skeleton likely represents a secondary calcification of an ancestral gorgonian horny axis. In addition, the comparison with stony coral skeletomes highlighted the low proportion of similar proteins between the biomineral OMs of hexacorallian and octocorallian corals, suggesting an independent acquisition of calcification in anthozoans.
Project description:Black corals, ecologically important cnidarians found from shallow to deep ocean depths, form a strong yet flexible skeleton of sclerotized chitin and other biomolecules including proteins. The structure and mechanical properties of the chitin component of the skeleton have been well-characterized. However, the protein component has remained a mystery. Here we used liquid chromatography-tandem mass spectrometry to sequence proteins extracted from two species of common Red Sea black corals following either one or two cleaning steps. We detected hundreds of proteins between the two corals, nearly 70 of which are each others’ reciprocal best BLAST hit. Unlike stony corals, only a few of the detected proteins were moderately acidic (biased toward aspartic and/or glutamic acid residues) suggesting less of a role for these types of proteins in black coral skeleton formation as compared to stony corals. No distinct chitin binding domains were found in the proteins, but proteins annotated as having a role in protein and chitin modifications were detected. Our results support the integral role of proteins in black coral skeleton formation, structure, and function.
Project description:Soft corals (Cnidaria, Anthozoa, Octocorallia) are a diverse group of marine invertebrates that inhabit various marine environments in tropical and subtropical areas. Several species are recognized as prolific sources of compounds with a wide array of biological activities. Recent advances in analytical techniques, supported by robust statistical analyses, have allowed the analysis and characterization of the metabolome present in a single living organism. In this study, a liquid chromatography-high resolution mass spectrometry metabolomic approach was applied to analyze the metabolite composition of 28 soft corals present in the Caribbean coast of Colombia. Multivariate data analysis was used to correlate the chemical fingerprints of soft corals with their cytotoxic activity against tumor cell lines for anticancer purpose. Some diterpenoids were identified as specific markers to discriminate between cytotoxic and non-cytotoxic crude extracts of soft corals against tumor cell lines. In the models generated from the comparative analysis of PLS-DA for tumor lines, A549 and SiHa, the diterpene 13-keto-1,11-dolabell-3(E),7(E),12(18)-triene yielded a high score in the variable importance in projection. These results highlight the potential of metabolomic approaches towards the identification of cytotoxic agents against cancer of marine origin. This workflow can be useful in several studies, mainly those that are time consuming, such as traditional bioprospecting of marine natural products.
2018-11-08 | MTBLS777 | MetaboLights
Project description:Black corals
| PRJNA809900 | ENA
Project description:LINEAR MITOCHONDRIAL GENOME IN ANTHOZOA (CNIDARIA): A CASE STUDY IN CERIANTHARIA