Project description:Escherichia coli, the common inhabitant of the mammalian intestine, exhibits considerable intraspecies genomic variation, which has been suggested to reflect adaptation to different ecological niches. Also, regulatory trade-offs, e.g., between catabolic versatility and stress protection, are thought to result in significant physiological differences between strains. For these reasons, the relevance of experimental observations made for “domesticated” E. coli strains with regard to the behaviour of this species in its natural environments is often questioned and frequently doubts are raised on the status of E. coli as a defined species. We therefore investigated the variability of important eco-physiological functions such as carbon substrate uptake and breakdown capabilities as well as stress defence mechanisms in the genomes of commensal and pathogenic E. coli strains. Furthermore, eco-physiological properties of environmental strains were compared to standard laboratory strain K-12 MG1655. Catabolic, stress protection, and carbon- and energy source transport operons showed a very low intraspecies variability in 57 commensal and pathogenic E. coli. Environmental isolates adapted to glucose-limited growth in a similar way as E. coli MG1655, namely by increasing their catabolic flexibility and by inducing high affinity substrate uptake systems. Our results indicate that the major eco-physiological properties are highly conserved in the natural population of E. coli. This questions the proposed dominant role of horizontal gene transfer for niche adaptation. Keywords: comparative genomic hybridisation
Project description:Escherichia coli, the common inhabitant of the mammalian intestine, exhibits considerable intraspecies genomic variation, which has been suggested to reflect adaptation to different ecological niches. Also, regulatory trade-offs, e.g., between catabolic versatility and stress protection, are thought to result in significant physiological differences between strains. For these reasons, the relevance of experimental observations made for âdomesticatedâ E. coli strains with regard to the behaviour of this species in its natural environments is often questioned and frequently doubts are raised on the status of E. coli as a defined species. We therefore investigated the variability of important eco-physiological functions such as carbon substrate uptake and breakdown capabilities as well as stress defence mechanisms in the genomes of commensal and pathogenic E. coli strains. Furthermore, eco-physiological properties of environmental strains were compared to standard laboratory strain K-12 MG1655. Catabolic, stress protection, and carbon- and energy source transport operons showed a very low intraspecies variability in 57 commensal and pathogenic E. coli. Environmental isolates adapted to glucose-limited growth in a similar way as E. coli MG1655, namely by increasing their catabolic flexibility and by inducing high affinity substrate uptake systems. Our results indicate that the major eco-physiological properties are highly conserved in the natural population of E. coli. This questions the proposed dominant role of horizontal gene transfer for niche adaptation. Keywords: comparative genomic hybridisation Standard approach for comparative genomic hybrisisation, 5 environmental strains were analysed on commercial E. coli MG1655 arrays (MWG), for each strains, biological replicates were done (separate LB cultures)
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 are known, including food of animal origin and produce. The ecology of this pathogen outside its human host is largely unknown. One third of its annotated genes still are hypothetical. To identify genetic determinants expressed under environmental factors, we applied strand-specific RNA-sequencing of strain E. coli EDL933 under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes, only 144 are transcriptionally completely inactive under all conditions. Of 1,771 hypothetical genes, 1,672 exhibit significant transcriptional signals under at least one condition. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up regulated on radish sprouts, cattle feces, or in the presence of antibiotics. For instance, azoR is biotechnologically important, but its environmental function has been elusive. This gene is highly active on radish sprouts. Further, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates. Thus, environmental transcriptomics uncovers hitherto unknown gene functions and regulatory patterns of Escherichia coli O157:H7.
Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:Escherichia coli, the common inhabitant of the mammalian intestine, exhibits considerable intraspecies genomic variation, which has been suggested to reflect adaptation to different ecological niches. Also, regulatory trade-offs, e.g., between catabolic versatility and stress protection, are thought to result in significant physiological differences between strains. For these reasons, the relevance of experimental observations made for “domesticated” E. coli strains with regard to the behaviour of this species in its natural environments is often questioned and frequently doubts are raised on the status of E. coli as a defined species. We therefore investigated the variability of important eco-physiological functions such as carbon substrate uptake and breakdown capabilities as well as stress defence mechanisms in the genomes of commensal and pathogenic E. coli strains. Furthermore, eco-physiological properties of environmental strains were compared to standard laboratory strain K-12 MG1655. Catabolic, stress protection, and carbon- and energy source transport operons showed a very low intraspecies variability in 57 commensal and pathogenic E. coli. Environmental isolates adapted to glucose-limited growth in a similar way as E. coli MG1655, namely by increasing their catabolic flexibility and by inducing high affinity substrate uptake systems. Our results indicate that the major eco-physiological properties are highly conserved in the natural population of E. coli. This questions the proposed dominant role of horizontal gene transfer for niche adaptation. Keywords: CGH, E. coli, gDNA, environmental strains, eco-physiology
Project description:Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 are known, including food of animal origin and produce. The ecology of this pathogen outside its human host is largely unknown. One third of its annotated genes still are hypothetical. To identify genetic determinants expressed under environmental factors, we applied strand-specific RNA-sequencing of strain E. coli EDL933 under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes, only 144 are transcriptionally completely inactive under all conditions. Of 1,771 hypothetical genes, 1,672 exhibit significant transcriptional signals under at least one condition. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up regulated on radish sprouts, cattle feces, or in the presence of antibiotics. For instance, azoR is biotechnologically important, but its environmental function has been elusive. This gene is highly active on radish sprouts. Further, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates. Thus, environmental transcriptomics uncovers hitherto unknown gene functions and regulatory patterns of Escherichia coli O157:H7. Eleven different conditions were sequenced on the SOLiD system. Of two of the condtions, spinach medium and LB-nitrite, technical replicates were sequenced. Of LB medium and radish sprouts, biological replicates were sequenced on an Illumina MiSeq.
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of intracellular life within a ruminant and environmental protozoan on E. coli O157:H7, global transcript levels of strain EDL933 cells inside Acanthamoeba were compared to cell grown in the protozoan media (ATCC PYG712) by microarray.