Project description:The factors that govern the retention and abundance of specific microbial lineages within a developing intestinal microbiota remain poorly defined. Human milk oligosaccharides consumed by nursing infnats pass undigested to the distal gut where they may be consumed by microbes. We investigated the transcriptional response of Bacterides fragilis, a prominent gut resident, to the presence of HMOs. In vitro transcriptional profiles of Bacteroides fragilis obtained from biological duplicate cultures taken at middle log phase in minimal media glucose (MM-Glu) and in minimal media with human milk oligosaccharides (MM-HMO).
Project description:This study was performed to investigate the effect of aging and high fat diet on gut microbiota in F344 rats by the pyrosequencing method.
Project description:The factors that govern the retention and abundance of specific microbial lineages within a developing intestinal microbiota remain poorly defined. Human milk oligosaccharides consumed by nursing infnats pass undigested to the distal gut where they may be consumed by microbes. We investigated the transcriptional response of Bacterides fragilis, a prominent gut resident, to the presence of HMOs.
Project description:Investigation of the effect of chow diet integration with standard baker's yeast leavened carasau bread (SB) or with functional sourdough-leavened carasau bread (FB) on the gut microbiota of young rats.
Project description:The human intestinal microbiota associated with rats produces in vivo a soluble(s) factor(s) that down-regulates the expression of genes encoding for the Shiga toxin II in E. coli O157:H7. The Shiga toxin II is one of the major virulence factors of E. coli enterohemorragic leading to the deadly hemolitic and uremic syndrome. Investigation of the effect of the human intestinal microbiota on the whole transcriptome of EHEC O157:H7 is of major importance to increase our understanding of the pathogen transcriptomic adaptation in response to the human microbiota. We analysed by microarray hybridization the gene expression pattern of EHEC O157:H7 grown in the caecal content of germ-free rats or rats associated with the human microbiota of a healthy human subject. By doing so, we increased our understanding of the regulatory activities of the human gut microbiota on E. coli O157:H7 A first group of twelve weeks old, male, germfree rats was colonized with the human fecal microbiota and a second group was kept germfree and condidered as a controle group. Rats were fed for two weeks with a sterile human type diet, and were sacrificed. E. coli O157:H7 was cultivated for 6 hours in the caecal content of germfree rats and rats associated with the human intestinal microbiota. RNAs were extracted and cDNAs were synthesized, fragmented and biotinylated before being hybridized on Affymetrix E. coli genome 2.0 arrays. The effect of the human intestinal microbiota was investigated by comparing the gene expression level in the caecal content of rats associated with the human microbiota with their expression level in the caecal content of the germfree rats.
Project description:Fecal samples collected on day 5 from randomly selected colitic SD rats were analyzed for gut microbiota by sequencing the V4 region of the 16S rRNA gene. The orally administered Dex-P-laden NPA2 coacervate (Dex-P/NPA2) significantly restores the diversity of gut microbiota compared with colitic SD rats in the Dex-P/PBS group and the untreated colitic rats (Control).
Project description:Dietary fats have been shown to affect gut microbiota composition and aging gene transcription of middle-aged rats at a normal dose, but little is known about such an effect on gut barrier. In colon, the main component of mucus layer is Muc2, produced by the goblet cells. This study investigated the changes in Muc2 expression, goblet cells proliferation, TLRs and inflammatory cytokines in the colon of middle-aged rats. Proteome technology was applied to explore the possible molecular mechanisms. The results indicated that intake of fish oil at a normal dose downregulated colonic Muc2 expression, and this negative effect of fish oil probably involved the suppression of mucin glycosylation process.
Project description:The gut microbiota and innate immune system play critical roles in Alzheimer’s disease (AD). Bacteroides is elevated in AD patients and correlates with cerebrospinal fluid levels of Aβ and tau. We found that increased amyloid-β (Aβ) plaques in Bacteroides fragilis treated APP/PS1-21 mice were associated with altered cortical expression Aβ processing genes. B. fragilis suppressed peripheral CD4+ T cell production of GM-CSF and IL-4 and transcriptional changes in microglia related to GM-CSF and IL-4 signaling, phagocytosis, and protein degradation. Furthermore, B. fragilis impaired the microglial uptake of intracranially injected Aβ42, whereas Erysipelotrichaceae strains increased uptake. Depleting murine Bacteroidetes with metronidazole decreased amyloid load in aged 5xFAD mice, increased CD4+ T cell GM-CSF production, and activated microglial pathways related to cytokine signaling, phagocytosis and lysosomal degradation. These data suggest that the gut microbiome may contribute to AD pathogenesis by suppressing peripheral cytokines and microglia phagocytic function, leading to impaired immune-mediated Aβ clearance.
Project description:The gut microbiota and innate immune system play critical roles in Alzheimer’s disease (AD). Bacteroides is elevated in AD patients and correlates with cerebrospinal fluid levels of Aβ and tau. We found that increased amyloid-β (Aβ) plaques in Bacteroides fragilis treated APP/PS1-21 mice were associated with altered cortical expression Aβ processing genes. B. fragilis suppressed peripheral CD4+ T cell production of GM-CSF and IL-4 and transcriptional changes in microglia related to GM-CSF and IL-4 signaling, phagocytosis, and protein degradation. Furthermore, B. fragilis impaired the microglial uptake of intracranially injected Aβ42, whereas Erysipelotrichaceae strains increased uptake. Depleting murine Bacteroidetes with metronidazole decreased amyloid load in aged 5xFAD mice, increased CD4+ T cell GM-CSF production, and activated microglial pathways related to cytokine signaling, phagocytosis and lysosomal degradation. These data suggest that the gut microbiome may contribute to AD pathogenesis by suppressing peripheral cytokines and microglia phagocytic function, leading to impaired immune-mediated Aβ clearance.
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment. Twenty-four week old F344 rats were fed with (n = 5) or without (n = 6) lansoprazole (PPI) for 50 weeks. Then, profiles of luminal microbiota in the terminal ileum were analyzed. Pyrosequencing for 16S rRNA gene was performed by genome sequencer FLX (454 Life Sciences/Roche) and analyzed by metagenomic bioinformatics.