Project description:Comparison of paraspinal muscle imbalance between idiopathic scoliosis and congenital scoliosis may shed some light on the causality of paraspinal muscle imbalance and idiopathic scoliosis. This study aims to compare the transcriptomic profiles of paraspinal muscle imbalance between idiopathic scoliosis and congenital scoliosis.
Project description:Plasma exosomal miRNA may differ between adolescent idiopathic scoliosis patients and healthy individuals. Sequencing analysis was used to find these differential miRNAs.
Project description:Idiopathic scoliosis (IS) is a three-dimensional rotation of the spine >10 degrees with an unknown etiology. Our laboratory established a late-onset IS model in zebrafish (Danio rerio) containing a deletion in kif7. 25% of kif7co63/co63 zebrafish develop spinal curvatures and are otherwise developmentally normal, although the molecular mechanisms underlying the scoliosis are unknown. To define transcripts associated with scoliosis in this model, we performed bulk mRNA sequencing on 6 weeks past fertilization (wpf) kif7co63/co63 zebrafish with and without scoliosis. Additionally, we sequenced kif7co63/co63, kif7co63/+, and AB zebrafish (n= 3 per genotype). Sequencing reads were aligned to the GRCz11 genome and FPKM values were calculated. Differences between groups were calculated for each transcript by t-test. Principal component analysis showed that transcriptomes clustered by sample age and genotype. kif7 mRNA was mildly reduced in both homozygous and heterozygous zebrafish compared to AB. Sonic hedgehog target genes were upregulated in kif7co63/co63 zebrafish over AB, but no difference was detected between scoliotic and non-scoliotic mutants. The top upregulated genes in scoliotic zebrafish were cytoskeletal keratins.. Pankeratin staining of 6 wpf scoliotic and non-scoliotic kif7co63/co63 zebrafish showed increased keratin levels within the zebrafish musculature and intervertebral disc (IVD). Keratins are major components of the embryonic notochord, and aberrant keratin expression has been associated with intervertebral disc degeneration (IVDD) in both zebrafish and humans. The role of increased keratin accumulation as a molecular mechanism associated with the onset of scoliosis warrants further study.
Project description:The purpose of the study was to determine differences in mRNA concentration of VDR isoforms in bone, cartilage and paravertebral muscles between tissues from curve concavity and convexity, between JIS and AIS and to identify VDR responsive genes differentiating Juvenile and Adolescent Idiopathic Scoliosis in paravertebral muscles.