Project description:The Ashanti Dwarf Pig (ADP) of Ghana is an endangered pig breed with hardy and disease resistant traits. Characterisation of animal genetic resources provides relevant data for their conservation and sustainable use for food security and economic development. We investigated the origin and phylogenetic status of the local ADP of Ghana and their crosses with modern commercial breeds based on mtDNA, MC1R and Y-chromosome sequence polymorphisms, and genome-wide SNP genotyping. The study involved 164 local pigs sampled from the three agro-ecological zones of Ghana. Analyses of the mitochondrial D-loop region and Y-chromosome sequences revealed that the ADP of Ghana has both European and Asian genetic signatures. The ADP also displays considerable variation in the MC1R gene. Black coat colour is the most predominant within the breed, with the dominant black alleles of both Asian and European origin contributing to the majority of alleles in the pool. European alleles for spotting are present at a low frequency in the sample set, and may account for the occurrence of spotted piglets in some APD litters. Other colour variants may be due to epistatic interactions with additional coat colour loci, or mutations. The wide variations in coat colour patterns suggest that morphology alone cannot be used to adequately characterise Ghanaian local pigs. PCA analysis of SNP genotyping data revealed a strong location effect on clustering of local Ghanaian pigs. Based on this work, we recommend that further studies be carried out on more local pigs to find out the effect of admixture on important adaptive and economic traits of the ADP and other local Sus breeds in Africa to help develop a sustainable conservation programmes to prevent the decline of this genetic resource.
Project description:The sense of touch relies on the detection of mechanical stimuli by specialized sensory neurons. Mechanosensory neurons are generated from neural crest cells, but the scarcity of molecular data has made it difficult to analyze their development and to define the basis of their diversity and function. The transcription factor c-Maf is crucial for mechanosensory function in mice and humans. In particular, c-Maf is required for the development and function of mechanosensory neurons terminating in lanceolate endings, Meissner corpuscles and Pacinian corpuscles. c-Maf is a key transcription factor directing the development and function of rapidly-adapting mechanoreceptors and their end organs.
Project description:For the purpose of the Gene Regulatory Network validation we have performed chromatin-immunoprecipitation sequencing (ChIP-Seq) experiment for three transcription factors; namely GATA3, MAF and MYB. ChIP-Seq of GATA3, MAF and MYB in human naïve CD4+ T-cells differentiated toward Th1 and Th2 until day 6. Matched INPUT samples were also sequenced for each condition.
Project description:Homozygous disruption of c-Maf led to embryonic lethality and impaired erythroblastic island formation. c-Maf is expressed in the fetal liver macrophages. It suggests that macrophages are responsible for the lethality of c-Maf knock-out embryos. To search downstream genes of c-Maf, we surveyed genes associated with macrophage function by microarray analysis. keywords: c-Maf, macrophage, erythroblastic islands, WT (c-Maf WT) and c-Maf KO (c-Maf KO) fetal liver macrophages were sorted by a FACSAria cell sorter. Total RNAs from those macrophages were prepared using RNeasy Kit. Genes down-regulated in c-Maf KO macrophages were searched by GeneSpring software.
Project description:Previous experiments have demonstrated that c-Maf can undergo liquid-liquid phase separation (LLPS) in MM. In order to search for the downstream target genes of c-Maf based on its LLPS regulation, we successfully constructed three kinds of cells with EV, c-Maf and already c-Maf-IDR mutation, and simultaneously subjected the three kinds of cells to ChIP sequencing (selecting the FLAG-tagged antibody), and then analysed them for the differential genes, thus screening the downstream targets of c-Maf based on its LLPS regulation.
Project description:Genome-wide analysis of Jarid2, Suz12, and c-Maf binding and H3K27me3 profiling in miR-155 KO and WT Th17 performed by ChIP-seq. We found that Jarid2 and c-Maf is differentially expressed in absence of miR-155 and they compete for binding to the Il22 promoter. We highlight targets of Jarid2 and Suz12 in miR-155 KO Th17 cells that are epigenetically silenced by increased H3K27me3 status. Furthermore, genome-wide analysis through Suz12 ChIP-exo in WT and Jarid2fl/fl;CD4cre Th17 reveals defects in PRC2 recruitment in abscence of Jarid2 that results in derepression of genes in Th17 cells. Thus, one main function of miR-155 is to curb epigenetic silencing by targeting Jarid2. Examination of Jarid2, Suz12, c-Maf binding and H3K27me3 changes in miR-155 KO and WT Th17.
Project description:We performed genome-wide mapping of MAF binding sites in control and MAF-overexpressing MCF7 cells to assess the consequences of estrogen (E2) stimulation on MAF recruitment to chromatin. To this end, we cultured MCF7 cells in hormone-deprived (HD) medium for 72 h and then E2 or vehicle was added for 1h prior to chromatin immunoprecipitation (ChIP). Samples were generated in triplicate. We report that MAF binding is largely independent of E2
Project description:Anopheles gambiae S form adults were drawn from the GAH laboratory colony that originated from the Ahafo region in Ghana. The GAH colony exhibits extensive insecticide resistance (bendiocarb, DDT, dieldrin, permethrin, deltamethrin). Gene expression was compared between blood-fed and sugar-fed females (3 hours after feeding) using a custom array focussing on around 300 detoxification-related genes.