Project description:Male and female 2- and 3-years old brown bear from the region of Tackasen (Sweden) were captured in summer and winter. Muscle biopsies from vastus lateralis were collected in february (hibernation state) and june (active period). Total RNA were extracted from muscle tissue and full transcriptome analysis (RNA Seq) were performed. Statistical analysis were performed to winter versus summer comparison from matched paired samples
Project description:Here we provide mass-spectrometry based plasma proteomics data of hibernating and active wild Scandinavian brown bears (Ursus arctos arctos). The brown bear hibernates for half the year. Despite obesity and the prolonged period of inactivity, bears show no signs of the harmful effects associated with these conditions in humans. Thus, the hibernating bear is a protentional translational model for addressing these complications in humans. We analyzed plasma samples from 14 subadult 2- to 3-year-old (y/o) bears (6 males and 8 females) collected both during hibernation and active state, and for some for the bears during two seasons, resulting in a total of 38 analyzed plasma samples. In triplicates, the proteins in the plasma samples were unfolded and reduced. To increase depth of the analysis and the chance to detect low molecular weight proteins and peptides, we filtered samples with a 50K MWCO filter with the aim to deplete larger proteins. The proteins in the permeate were then tryptically digested, desalted, and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein identification and quantification was performed with the MaxQuant software searching against an Ursus arctos horribilis protein database.
Project description:Brown bears hibernate throughout half of the year as a survival strategy to reduce energy consumption during prolonged periods with scarcity of food and water. Thyroid hormones are the major endocrine regulators of basal metabolic rate in humans. Therefore, we aimed to determine regulations in serum thyroid hormone levels in hibernation compared to the active state to investigate if these are involved in the adaptions for hibernation.We used electrochemiluminescence immunoassay to quantify total triiodothyronine (T3) and thyroxine (T4) levels in hibernation and active state in paired serum samples from six subadult Scandinavian brown bears. Additionally, we determined regulations in the liver mRNA levels of three major thyroid hormone-binding proteins; thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin, by analysis of previously published grizzly bear RNA sequencing data.We found that bears were hypothyroid when hibernating with T4 levels reduced to less than 44% (P = 0.008) and T3 levels reduced to less than 36% (P = 0.016) of those measured in the active state. In hibernation, mRNA levels of TBG and albumin increased to 449% (P = 0.031) and 121% (P = 0.031), respectively, of those measured in the active state. TTR mRNA levels did not change.Hibernating bears are hypothyroid and share physiologic features with hypothyroid humans, including decreased basal metabolic rate, bradycardia, hypothermia, and fatigue. We speculate that decreased thyroid hormone signaling is a key mediator of hibernation physiology in bears. Our findings shed light on the translational potential of bear hibernation physiology to humans for whom a similar hypometabolic state could be of interest in specific conditions.
Project description:Although many large mammal species went extinct at the end of the Pleistocene epoch, their DNA may persist due to past episodes of interspecies admixture. However, direct empirical evidence of the persistence of ancient alleles remains scarce. Here, we present multifold coverage genomic data from four Late Pleistocene cave bears (Ursus spelaeus complex) and show that cave bears hybridized with brown bears (Ursus arctos) during the Pleistocene. We develop an approach to assess both the directionality and relative timing of gene flow. We find that segments of cave bear DNA still persist in the genomes of living brown bears, with cave bears contributing 0.9 to 2.4% of the genomes of all brown bears investigated. Our results show that even though extinction is typically considered as absolute, following admixture, fragments of the gene pool of extinct species can survive for tens of thousands of years in the genomes of extant recipient species.
Project description:The Pleistocene was a dynamic period for Holarctic mammal species, complicated by episodes of glaciation, local extinctions, and intercontinental migration. The genetic consequences of these events are difficult to resolve from the study of present-day populations. To provide a direct view of population genetics in the late Pleistocene, we measured mitochondrial DNA sequence variation in seven permafrost-preserved brown bear (Ursus arctos) specimens, dated from 14,000 to 42,000 years ago. Approximately 36,000 years ago, the Beringian brown bear population had a higher genetic diversity than any extant North American population, but by 15,000 years ago genetic diversity appears similar to the modern day. The older, genetically diverse, Beringian population contained sequences from three clades now restricted to local regions within North America, indicating that current phylogeographic patterns may provide misleading data for evolutionary studies and conservation management. The late Pleistocene phylogeographic data also indicate possible colonization routes to areas south of the Cordilleran ice sheet.
Project description:The removal of individuals through hunting can destabilize social structure, potentially affecting population dynamics. Although previous studies have shown that hunting can indirectly reduce juvenile survival through increased sexually selected infanticide (SSI), very little is known about the spatiotemporal effects of male hunting on juvenile survival. Using detailed individual monitoring of a hunted population of brown bears (Ursus arctos) in Sweden (1991-2011), we assessed the spatiotemporal effect of male removal on cub survival. We modelled cub survival before, during and after the mating season. We used three proxies to evaluate spatial and temporal variation in male turnover; distance and timing of the closest male killed and number of males that died around a female's home range centre. Male removal decreased cub survival only during the mating season, as expected in seasonal breeders with SSI. Cub survival increased with distance to the closest male killed within the previous 1·5 years, and it was lower when the closest male killed was removed 1·5 instead of 0·5 year earlier. We did not detect an effect of the number of males killed. Our results support the hypothesis that social restructuring due to hunting can reduce recruitment and suggest that the distribution of the male deaths might be more important than the overall number of males that die. As the removal of individuals through hunting is typically not homogenously distributed across the landscape, spatial heterogeneity in hunting pressure may cause source-sink dynamics, with lower recruitment in areas of high human-induced mortality.
Project description:To investigate mechanisms by which hibernators avoid atherogenic hyperlipidemia during hibernation, we assessed lipoprotein and cholesterol metabolisms of free-ranging Scandinavian brown bears (Ursus arctos). In winter- and summer-captured bears, we measured lipoprotein sizes and sub-classes, triglyceride-related plasma-enzyme activities, and muscle lipid composition along with plasma-levels of antioxidant capacities and inflammatory markers. Although hibernating bears increased nearly all lipid levels, a 36%-higher cholesteryl-ester transfer-protein activity allowed to stabilize lipid composition of high-density lipoproteins (HDL). Levels of inflammatory metabolites, i.e., 7-ketocholesterol and 11ß-prostaglandin F2α, declined in winter and correlated inversely with cardioprotective HDL2b-proportions and HDL-sizes that increased during hibernation. Lower muscle-cholesterol concentrations and lecithin-cholesterol acyltransferase activity in winter suggest that hibernating bears tightly controlled peripheral-cholesterol synthesis and/or release. Finally, greater plasma-antioxidant capacities prevented excessive lipid-specific oxidative damages in plasma and muscles of hibernating bears. Hence, the brown bear manages large lipid fluxes during hibernation, without developing adverse atherogenic effects that occur in humans and non-hibernators.
Project description:Biological rhythms, such as rhythms in activity and body temperature, are usually highly synchronized and entrained by environmental conditions, such as photoperiod. However, how the expression of these rhythms changes during hibernation, when the perception of environmental cues is limited, has not yet been fully understood for all hibernators, especially in the wild. The brown bear (Ursus arctos) in Scandinavia lives in a highly seasonal environment and adapts to harsh winter conditions by exhibiting hibernation, characterized by reduced metabolism and activity. In this study, we aimed to explore the expression of biological rhythms in activity, body temperature and heart rate of free-ranging brown bears over the annual cycle, including active, hibernation and the transition states around den entry and exit. We found that rhythms in physiology and activity are mostly synchronized and entrained by the light-dark cycle during the bears' active state with predominantly diel and ultradian rhythms for body temperature, activity and heart rate. However, during hibernation, rhythms in body temperature and heart rate were considerably slowed down to infradian rhythms, influenced by the amount of snow in the denning area, whereas rhythms in activity remained diel. Rhythms in the transition states when bears prepared for entering or coming out of hibernation state displayed a combination of infradian and diel rhythms, indicating the preparation of the body for the change in environmental conditions. These results reveal that brown bears adjust their biological rhythms to the seasonal environment they inhabit. Rhythms in physiology and activity show simultaneity during the active state but are partly disconnected from each other during hibernation, when bears are most sheltered from the environment.
Project description:Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction.