Project description:Plasmids PL6A and PL6B are both carried by the C23T strain of the square archaeon Haloquadratum walsbyi, and are closely related (76% nucleotide identity), circular, about 6 kb in size, and display the same gene synteny. They are unrelated to other known plasmids and all of the predicted proteins are cryptic in function. Here we describe two additional PL6-related plasmids, pBAJ9-6 and pLT53-7, each carried by distinct isolates of Haloquadratum walsbyi that were recovered from hypersaline waters in Australia. A third PL6-like plasmid, pLTMV-6, was assembled from metavirome data from Lake Tyrell, a salt-lake in Victoria, Australia. Comparison of all five plasmids revealed a distinct plasmid family with strong conservation of gene content and synteny, an average size of 6.2 kb (range 5.8-7.0 kb) and pairwise similarities between 61-79%. One protein (F3) was closely similar to a protein carried by betapleolipoviruses while another (R6) was similar to a predicted AAA-ATPase of His 1 halovirus (His1V_gp16). Plasmid pLT53-7 carried a gene for a FkbM family methyltransferase that was not present in any of the other plasmids. Comparative analysis of all PL6-like plasmids provided better resolution of conserved sequences and coding regions, confirmed the strong link to haloviruses, and showed that their sequences are highly conserved among examples from Haloquadratum isolates and metagenomic data that collectively cover geographically distant locations, indicating that these genetic elements are widespread.
Project description:Transient plasmid transfection is common approach for studies in cultured mammalian cells. To examine behavior of transfected plasmids, we analyzed their transcriptional landscape by deep sequencing. We found that plasmids generate different levels of transcripts virtually everywhere. Spurious transcription may have undesirable effects as some co-transfected plasmids inhibited expression of luciferase reporters in a dose-dependent manner. In one case, we attributed this effect to kan/neo resistance cassette, which generated a unique population of edited sense and antisense small RNAs. The unexpected complexity of expression of transiently transfected plasmids highlights the importance of appropriate experimental controls.
Project description:Transient plasmid transfection is common approach for studies in cultured mammalian cells. To examine behavior of transfected plasmids, we analyzed their transcriptional landscape by deep sequencing. We found that plasmids generate different levels of transcripts virtually everywhere. Spurious transcription may have undesirable effects as some co-transfected plasmids inhibited expression of luciferase reporters in a dose-dependent manner. In one case, we attributed this effect to kan/neo resistance cassette, which generated a unique population of edited sense and antisense small RNAs. The unexpected complexity of expression of transiently transfected plasmids highlights the importance of appropriate experimental controls. HEK293 cells (human origin) transiently transfected with 4 various plasmids
Project description:Plasmid-free Lactococcus lactis IL1403 is one of the best-characterized representatives of lactic acid bacteria (LAB), intensively used in broad microbiology worldwide. Its parent strain, L. lactis IL594, contains seven plasmids (pIL1-pIL7) with resolved DNA sequences and an indicated role for overall plasmid load in enhancing host adaptive potential. To determine how individual plasmids manipulate the expression of phenotypes and chromosomal genes, we conducted global comparative phenotypic analyses combined with transcriptomic studies in plasmid-free L. lactis IL1403, multi-plasmid L. lactis IL594 and its single-plasmid derivatives. The presence of pIL2, pIL4 and pIL5 led to the most pronounced phenotypic differences in the metabolism of several carbon sources, including some β-glycosides and organic acids. The pIL5 plasmid also contributed to increased tolerance to some antimicrobial compounds and heavy metal ions, especially those in the toxic cation group. Comparative transcriptomics showed significant variation in the expression levels of up to 189 chromosomal genes due to the presence of single plasmids, and 435 unique chromosomal genes that are resultant of the activity of all plasmids, which may suggest that the observed phenotypic changes are not only the result of direct action of their own genes, but also originate from indirect actions through cross-talk between plasmids and the chromosome. The data obtained here indicate that plasmid maintenance leads to the development of important mechanisms of global gene regulation that provide changes in the central metabolic pathways and adaptive properties of L. lactis, and suggest the possibility of a similar phenomenon among other groups of bacteria.
Project description:The L. lactis IL594 strain contains seven plasmids (pIL1 to pIL7) and is the parental strain of the plasmid-free L. lactis IL1403, one of the most studied lactic acid bacteria (LAB) strain. The genetic sequences of pIL1 to pIL7 plasmids have been recently described, however the knowledge of global changes in host phenotype and transcriptome remains poor. In presented study, global phenotypic analyses were combined with transcriptomic studies to evaluate a potential influence of plasmidic genes on overall gene expression in industrially important L. lactis strains. High-throughput screening of phenotypes differences revealed pronounced phenotypic differences in favor of IL594 during the metabolism of seven C-sources, including carbohydrates and β-glucosides. A plasmid-bearing strain presented increased resistance to unfavorable growth conditions, including the presence of heavy metal ions, antibiotics and antimicrobial compounds. Global comparative transcriptomic study of L. lactis strains revealed variation in the expression of over 370 of chromosomal genes caused by plasmids presence. The general trend presented upregulated energy metabolism and biosynthetic genes, differentially expressed regulators, prophages and cell resistance proteins. Our findings suggest that plasmids maintenance leads to significant perturbation in global gene regulation that provide changes in central metabolic pathways and adaptive properties of the IL594 cells.
Project description:The plasmids introduced into the E. coli cells affect the expression of chromosomal genes. Therefore we aimed at comparing the protein expression profiles of a strain not containing any plasmid with strains that do carry plasmids.
Project description:Antibiotic resistance is exacerbated by the exchange of antibiotic resistance genes (ARGs) between microbes from diverse habitats. Plasmids are important ARGs mobile elements and are spread by horizontal gene transfer (HGT). In this study, we demonstrated the presence of multi-resistant plasmids from inhalable particulate matter (PM) and its effect on gene horizontal transfer. Three transferable multi-resistant plasmids were identified from PM in a hospital, using conjugative mating assays and nanopore sequencing. pTAir-3 contained 26 horizontal transfer elements and 10 ARGs. Importantly pTAir-5 harbored carbapenem resistance gene (blaOXA) which shows homology to plasmids from human and pig commensal bacteria, thus indicating that PM is a media for antibiotic resistant plasmid spread. In addition, 125 μg/mL PM2.5 and PM10 significantly increased the conjugative transfer rate by 110% and 30%, respectively, and augmented reactive oxygen species (ROS) levels. Underlying mechanisms were revealed by identifying the upregulated expressional levels of genes related to ROS, SOS, cell membranes, pilus generation, and transposition via genome-wide RNA sequencing. The study highlights the airborne spread of multi-resistant plasmids and the impact of inhalable PM on the horizontal transfer of antibiotic resistance.