Project description:The project analyzed 88 breast cancer clinical samples, including lymph node negative and positive primary tumors, lymph node metastases, and healthy tissue as control. All samples were combined with a super-SILAC mix that served as an internal standard for quantification.
Project description:Lymph node involvement is a major prognostic variable in breast cancer. Whether the molecular mechanisms that drive breast cancer cells to colonize lymph nodes are shared with their capacity to form distant metastases is yet to be established. In a transcriptomic survey aimed at identifying molecular factors associated with lymph node involvement of ductal breast cancer, we found that luminal differentiation, assessed by the expression of estrogen receptor (ER) and/or progesterone receptor (PR) and GATA3, was only infrequently lost in node-positive primary tumors and in matched lymph node metastases. The transcription factor GATA3 critically determines luminal lineage specification of mammary epithelium and is widely considered a tumor and metastasis suppressor in breast cancer. Strong expression of GATA3 and ER in a majority of primary node-positive ductal breast cancer was corroborated by quantitative RT-PCR and immunohistochemistry in the initial sample set, and by immunohistochemistry in an additional set from 167 patients diagnosed of node-negative and positive primary infiltrating ductal breast cancer, including 102 samples from loco-regional lymph node metastases matched to their primary tumors, as well as 37 distant metastases. These observations suggest that loss of luminal differentiation is not a major factor driving the ability of breast cancer cells to colonize regional lymph nodes. The transcriptomic study comprises 16 samples from Lymph node metastasis from infiltrating ductal breast carcinoma, 18 samples from Primary node-positive infiltrating ductal,7 samples from Primary node-negative infiltrating ductal and 3 samples from Unaffected lymph node were included. Their RNA was isolated and prepared for hybridization to human Affymetrix GeneChip arrays.
Project description:The project analyzed 88 breast cancer clinical samples, including lymph node negative and positive primary tumors, lymph node metastases, and healthy tissue as control. All samples were combined with a super-SILAC mix that served as an internal standard for quantification.
Project description:The objective of this study was to gain insights into the biological basis of colon cancer progression by characterizing gene expression differences between normal colon epithelium, corresponding colorectal primary tumors and metastases. We found a close similarity in gene expression patterns between primary tumors and metastases, indicating a correlation between gene expression and morphological characteristics. PRDX4 was identified as highly expressed both in primary colon tumors and metastases, and selected for further characterization. Our study revealed that Prdx4 (PrxIV, AOE372) shows functional similarities to other Prx family members by negatively effecting apoptosis induction in tumor cells. In addition, our studies link Prdx4 with Hif-1M-NM-1, a key regulatory factor of angiogenesis. Targeting Prdx4 may be an attractive approach in cancer therapy, as its inhibition is expected to lead to induction of apoptosis and blockade of Hif-1M-NM-1-mediated tumor angiogenesis. mRNA expression profiling of normal colon epithelium (5), primary colon tumors (12 with 1 replicate) and either lymph node metastases (9 with 2 replicates) or liver metastases (2) and cell lines (4) from twelve colon cancer patients.
Project description:Bulk sequencing and copy number analysis of seven colon cancer patient primary tumors and their lymph node metastases were analyzed. Tumor heterogeneity and subclonality were profiled for each lymph sample and mapped to multiple, spacially distinct primary samples to explore lymph node tumor seeding models.
Project description:Metastasis is responsible for the majority of deaths in a variety of cancer types, including breast cancer. Although several factors or biomarkers have been identified to predict the outcome of patients with breast cancer, few studies have been conducted to identify metastasis-associated biomarkers. Quantitative iTRAQ proteomics analysis was used to detect differentially expressed proteins between lymph node metastases and their paired primary tumor tissues from 23 patients with metastatic breast cancer. Immunohistochemistry was performed to validate the expression of two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins in 190 paraffin-embedded tissue samples. These four proteins were further analyzed for their correlation with clinicopathological features in 190 breast cancer patients. We identified 637 differentially regulated proteins (397 upregulated and 240 downregulated) in lymph node metastases compared with their paired primary tumor tissues. Furthermore, bioinformatics analysis using GEO profiling confirmed the difference in the expression of EpCAM between metastases and primary tumors tissues. Two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins were associated with the progression of breast cancer. Obviously, EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. We further identified αB-crystallin as an independent biomarker to predict lymph node metastasis and the outcome of breast cancer patients.
Project description: Lymph node involvement is a major prognostic variable in breast cancer. Whether the molecular mechanisms that drive breast cancer cells to colonize lymph nodes are shared with their capacity to form distant metastases is yet to be established. In a transcriptomic survey aimed at identifying molecular factors associated with lymph node involvement of ductal breast cancer, we found that luminal differentiation, assessed by the expression of estrogen receptor (ER) and/or progesterone receptor (PR) and GATA3, was only infrequently lost in node-positive primary tumors and in matched lymph node metastases. The transcription factor GATA3 critically determines luminal lineage specification of mammary epithelium and is widely considered a tumor and metastasis suppressor in breast cancer. Strong expression of GATA3 and ER in a majority of primary node-positive ductal breast cancer was corroborated by quantitative RT-PCR and immunohistochemistry in the initial sample set, and by immunohistochemistry in an additional set from 167 patients diagnosed of node-negative and –positive primary infiltrating ductal breast cancer, including 102 samples from loco-regional lymph node metastases matched to their primary tumors, as well as 37 distant metastases. These observations suggest that loss of luminal differentiation is not a major factor driving the ability of breast cancer cells to colonize regional lymph nodes.
Project description:This SuperSeries is composed of the following subset Series: GSE32488: Expression profiling of formalin-fixed, paraffin-embedded (FFPE) breast cancer metastases of the lymph node and autopsy tissues [DASL HT-12 samples] GSE32489: Expression profiling of formalin-fixed, paraffin-embedded (FFPE) breast cancer metastases of the lymph node and autopsy tissues [DASL HumanRef-v3 samples] Refer to individual Series
Project description:Breast cancer is the most common malignancy that develops in women, responsible for the highest cancer-associated death rates. Triple negative breast cancers (TNBC) represent an important subtype that have an aggressive clinical phenotype, are associated with a higher likelihood of metastasis and are not responsive to current targeted therapies. miRNAs have emerged as an attractive candidate for molecular biomarkers and treatment targets in breast cancer, but their role in the progression of TNBC remains largely unexplored. This study has investigated miRNA expression profiles in 31 primary TNBC cases and in 13 lymph node metastases compared with 23 matched normal breast tissues to determine miRNAs associated with the initiation of this disease subtype and those associated with its metastasis. 71 miRNAs were differentially expressed in TNBC, the majority of which have previously been associated with breast cancer, including members of the miR-200 family and the miR-17-92 oncogenic cluster, suggesting that miRNAs involved in the initiation of TNBC are not subtype specific. However, the repertoire of miRNAs expressed in lymph node negative and lymph node positive TNBCs were largely distinct from one another. In particular, miRNA profiles associated with lymph node negative disease tended to be up-regulated, while those associated with lymph node positive disease were down-regulated and largely overlapped with the profiles of their matched lymph node metastases. miRNA expression profiles were examined in 31 primary TNBC cases and in 13 lymph node metastases compared with 23 matched normal breast tissues