ABSTRACT: The genome of the European Beech (Fagus sylvatica) shows no traces of horizontal gene transfer from fungi and provides a resource for future studies for a climate-change-adapted forestry in Europe
Project description:Young Fagus sylvatica trees (approximately 7 to 8 years) were collected from a natural regeneration beech forest. The trees were excavated with intact soil cores, roots and top organic layer. The trees were then kept outdoors at the Department of Forest Botany, Georg-August-Universität Göttingen. Plants were protected from rain, and light conditions were matched to those of the natural stand using a shading net; otherwise, plants were exposed to natural climatic conditions. The soil moisture was regularly measured; plants were watered with deionized water as needed to keep soil moisture close to the original conditions. Trees was randomly relocated on a weekly basis throughout the experiment to avoid biasses caused by location or light effects. After 21 weeks, a treatment was applied to understand the physiological mechanisms of inorganic nitrogen uptake and assimilation under conditions of an inorganic nitrogen saturated forest simulation: Plants were fertilized with either a 20 mM solution of KNO3, a 20 mM solution of NH4Cl, or demineralized water (control) for 2 days. On the third day, the trees were harvested. Root tips were immediately shock-frozen in liquid nitrogen and used for RNA extraction.
Project description:Bacterial community composition in the phyllosphere and rhizosphere of beech (Fagus sylvatica), subjected to woolly beech aphid (Phyllaphis fagi) infestation in a mesocosm experiment
Project description:Transcription profiling of mycorrhized European beech (Fagus sylvatica L.) roots in response to fertilization with different forms of inorganic nitrogen
Project description:Recent advances in molecular and genetic studies about flowering time control have been increasingly available to elucidate the physiological mechanism underlying masting, the intermittent and synchronized production of a large amount of flowers and seeds in plant populations. To identify unexplored developmental and physiological processes associated with masting, genome-wide transcriptome analysis is a promising tool, but such analyses have yet to be performed. We established a field transcriptome using a typical masting species, Japanese beech (Fagus crenata Blume), over two years, and analyzed the data using a nonlinear time-series analysis called convergent cross mapping. Our field transcriptome was found to undergo numerous changes depending on the status of floral induction and season. An integrated approach of high-throughput transcriptomics and causal inference was successful at detecting novel causal regulatory relationships between nitrate transport and florigen synthesis/transport in a forest tree species. The synergistic activation of nitrate transport and floral transition could be adaptive to simultaneously satisfy floral transition at the appropriate timing and the nitrogen demand needed for flower formation.