Rhopalosiphum padi, birdcherry-oat aphid, genome data
Ontology highlight
ABSTRACT: These are genomic reads for the assembly of the R. padi genome: Sequence centre TGAC. 2X250 HiSeq Illumia. PCR-free library. 395bp insert size.
Project description:The bird cherry-oat aphid, Rhopalosiphum padi (L.), is a major insect pest of cereal crops in many countries. Imidacloprid has been widely used for controlling piercing-sucking insect pests worldwide, but its sublethal effects on R. padi have not been well addressed. In this study, we investigated the sublethal effects of imidacloprid on biological parameters and five enzyme activities of R. padi. The LC10, LC20, and LC25 of imidacloprid to adult aphids were 0.0053, 0.0329 and 0.0659 mg L-1, respectively. These concentrations significantly decreased pre-adult survival rate, but prolonged the development duration of 1st instar nymphs, pre-oviposition period, and adult longevity. Adult oviposition period was also extended by LC20. The intrinsic rate of increase (r), net reproductive rate (R0), and finite rate (?) decreased at all three concentrations, whereas mean generation time (T) increased. Moreover, LC20 and LC25 significantly inhibited superoxide dismutase (SOD) activity, but increased catalase (CAT) activity. Acetylcholinesterase (AChE) activity also increased at LC20. However, cytochrome P450 enzyme and peroxidase (POD) activity did not differ between imidacloprid treatments and the control. In conclusion, the imidacloprid concentrations tested here have negative impacts on the performance of R. padi by reducing its nymphal survival, extending the development duration of some stages, decreasing the rate of population growth, and altering enzyme activities.
Project description:BACKGROUND:Most aphids exhibit wing polyphenism in which wingless and winged morphs produce depending on the population density and host plant quality. Although the influence of environmental factors on wing polyphenism of aphids have been extensively investigated, molecular mechanisms underlining morph differentiation (i.e. wing development /degeneration), one downstream aspect of the wing polyphenism, has been poorly understood. RESULTS:We examined the expression levels of the twenty genes involved in wing development network, and only vestigial (vg) showed significantly different expression levels in both whole-body and wall-body of third instar nymphs, with 5.4- and 16.14- fold higher expression in winged lines compared to wingless lines, respectively in Rhopalosiphum padi. vg expression was higher in winged lines compared to wingless lines in third, fourth instar nymphs and adults. Larger difference expression was observed in third (21.38-fold) and fourth (20.91-fold) instar nymphs relative to adults (3.12-fold). Suppression of vg using RNAi repressed the wing development of third winged morphs. Furthermore, dual luciferase reporter assay revealed that the miR-147 can target the vg mRNA. Modulation of miR-147b levels by microinjection of its agomir (mimic) decreased vg expression levels and repressed wing development. CONCLUSIONS:Our findings suggest that vg is essential for wing development in R. padi and that miR-147b modulates its expression.
Project description:Genetic diversity is the determinant for pest species' success and vector competence. Understanding the ecological and evolutionary processes that determine the genetic diversity is fundamental to help identify the spatial scale at which pest populations are best managed. In the present study, we present the first comprehensive analysis of the genetic diversity and evolution of Rhopalosiphum padi, a major pest of cereals and a main vector of the barley yellow dwarf virus (BYDV), in England. We have used a genotyping-by-sequencing approach to study whether (a) there is any underlying population genetic structure at a national and regional scale in this pest that can disperse long distances; (b) the populations evolve as a response to environmental change and selective pressures; and (c) the populations comprise anholocyclic lineages. Individual R. padi were collected using the Rothamsted Insect Survey's suction-trap network at several sites across England between 2004 and 2016 as part of the RIS long-term nationwide surveillance. Results identified two genetic clusters in England that mostly corresponded to a North-South division, although gene flow is ongoing between the two subpopulations. These genetic clusters do not correspond to different life cycle types, and cyclical parthenogenesis is predominant in England. Results also show that there is dispersal with gene flow across England, although there is a reduction between the northern and southern sites with the south-western population being the most genetically differentiated. There is no evidence for isolation by distance and other factors such as primary host distribution, uncommon in the south and absent in the south-west, could influence the dispersal patterns. Finally, results also show no evidence for the evolution of the R. padi population, and it is demographically stable despite the ongoing environmental change. These results are discussed in view of their relevance to pest management and the transmission of BYDV.
Project description:Aphids produce wing and wingless morphs, depending on the environmental conditions during their complex life cycles. Wing and wingless variations play an important role in migration and host alternation, affecting the migration and host alternation processes. Several transcriptional studies have concentrated on aphids and sought to determine how an organism perceives environmental cues and responds in a plastic manner, but the underlying mechanisms have remained unclear. Therefore, to better understand the molecular mechanisms underlying the wing polyphenism of this fascinating phenomenon, we provide the first report concerning the wing development of aphids in bird cherry-oat aphid Rhopalosiphum padi with comparative transcriptional analysis of all the developmental stages by RNA-Seq. We identified several candidate genes related to biogenic amines and hormones that may be specifically involved in wing development. Moreover, we found that the third instar stage might be a critical stage for visibility of alternative morphs as well as changes in the expression of thirty-three genes associated with wing development. Several genes, i.e., Wnt2, Fng, Uba1, Hh, Foxo, Dpp, Brk, Ap, Dll, Hth, Tsh, Nub, Scr, Antp, Ubx, Asc, Srf and Fl, had different expression levels in different developmental stages and may play important roles in regulating wing polyphenism.
Project description:Plant terpene synthases (TPSs) are key enzymes responsible for terpene biosynthesis, and can play important roles in defense against herbivore attack. In rice, the protein sequence of TPS46 was most closely related to maize TPS10. However, unlike maize tps10, tps46 was also constitutively expressed in rice even in the absence of herbivore attack. Potential roles or constitutive emissions of specific volatiles may due to the constitutive expressions of tps46 in rice. Therefore, in the present study, RNA interference (Ri) and overexpression (Oe) rice lines were generated to investigate the potential function of TPS46 in Oryza sativa sp. japonica. Interestingly, the rice plants become more susceptible to Rhopalosiphum padi when expression of tps46 was silenced compared with Wt in greenhouse conditions. Artificial infestation bioassays further confirmed that Ri rice lines were susceptible to R. padi, whereas Oe rice lines were repellent to R. padi. Based on GC-MS and ToF-MS analysis, a total of eight volatile products catalyzed by TPS46 in rice were identified. Among them, only limonene and Eβf could be detected in all the Ri, Oe, and Wt lines, whereas other six volatiles were only found in the blend of volatiles from Oe lines. Moreover, the amount of constitutive limonene and Eβf in the Ri lines was significantly lower than in Wt lines, while the amounts of these two volatiles in the Oe line were obviously higher than in control rice. Our data suggested that the constitutive emissions of Eβf and limonene regulated by the constitutive expression of tps46 may play a crucial role in rice defense against R. padi. Consequently, tps46 could be a potential target gene to be employed for improving the resistance of plants to aphids.
Project description:Bacterial endosymbionts have enabled aphids to adapt to a range of stressors, but their effects in many aphid species remain to be established. The bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type symbiont endobacteria, although the resulting aphid phenotype has not been described. This study presents the first report of R. padi infection with the facultative bacterial endosymbiont Hamiltonella defensa. Individuals of R. padi were sampled from populations in Eastern Scotland, UK, and shown to represent seven R. padi genotypes based on the size of polymorphic microsatellite markers; two of these genotypes harbored H. defensa. In parasitism assays, survival of H. defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani (Viereck) was 5 fold higher than for uninfected nymphs. Aphid genotype was a major determinant of aphid performance on two Hordeum species, a modern cultivar of barley H. vulgare and a wild relative H. spontaneum, although aphids infected with H. defensa showed 16% lower nymph mass gain on the partially resistant wild relative compared with uninfected individuals. These findings suggest that deploying resistance traits in barley will favor the fittest R. padi genotypes, but symbiont-infected individuals will be favored when parasitoids are abundant, although these aphids will not achieve optimal performance on a poor quality host plant.