Project description:Through transcriptome profiling using RNA-seq, we investigated the mechanisms behind bacterial endosymbiont (Burkholderia rhizoxinica) control over host (Rhizopus microsporus) reproductive biology. By analyzing differential expression across six different conditions, including fungal opposite mates growing independently with or without endosymbionts, as well as opposite mates growing together with endosymbionts (mating) or without endosymbionts (no mating), we were able to identify that endosymbionts control expression of a Ras signaling protein critical for sexual reproduction in many fungi (Ras2). As little is known regarding sexual reproduction in Mucoromycotina, we also used these data to investigate conservation of sex-related genes across all fungi, as well as predict potential genes involved in sensing of trisporic acid, the mating pheromone used by these fungi. 6 different conditions were analyzed, each consisting of two biological replicates. These included Rhizopus microsporus ATCC52813 (sex +) growing alone with endosymbionts, R. microsporus ATCC52814 (sex -) growing alone with endosymbionts, ATCC 52813 growing alone without endosymbionts, ATCC52814 growing alone without endosymbionts, ATCC52813 and ATCC52814 growing together with endosymbionts (successfully mating), and ATCC52813 and ATCC52814 growing together without endosymbionts (failure to mate). In each condition, fungi were cultivated on half-strength PDA and plugs of mycelium were placed at the edge of the plate. After 6 days, approximately 2.5 cm of tissue were harvested from the center of the plate. Each biological replicate consists of 5 plates which were pooled prior to RNA extraction to ensure sufficient tissue was collected.
Project description:Through transcriptome profiling using RNA-seq, we investigated the mechanisms behind bacterial endosymbiont (Burkholderia rhizoxinica) control over host (Rhizopus microsporus) reproductive biology. By analyzing differential expression across six different conditions, including fungal opposite mates growing independently with or without endosymbionts, as well as opposite mates growing together with endosymbionts (mating) or without endosymbionts (no mating), we were able to identify that endosymbionts control expression of a Ras signaling protein critical for sexual reproduction in many fungi (Ras2). As little is known regarding sexual reproduction in Mucoromycotina, we also used these data to investigate conservation of sex-related genes across all fungi, as well as predict potential genes involved in sensing of trisporic acid, the mating pheromone used by these fungi.
2017-05-13 | GSE57644 | GEO
Project description:Algal diversity in Amphistegina
Project description:Samples are from a screening experiment on 5 laboratory cultures of the coral endosymbiont: Symbiodiniaceae (Symbiodinium linuchae, Breviolum psygmophilum, Durusdinium trenchii, Effrenium voratum and Fugacium kawagutii). Samples are also from a thermal stress experiment (increased temperatures from 26 to 32 degrees C) carried out on Durusdinium trenchii and Cladocopium goreaui, two common coral endosymbionts on the Great Barrier Reef. All samples were collected on Markes Tenax TA thermal desorption tubes.
Lawson, C.A., Possell, M., Seymour, J.R., Raina, J.B. and Suggett, D.J., 2019. Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Scientific reports, 9(1), pp.1-11.