Project description:Dead wood represents an important pool of carbon and nitrogen in forest ecosystems. This source of soil organic matter has diverse ecosystem functions that include, among others, carbon and nitrogen cycling. However, information is limited on how deadwood properties such as chemical composition, decomposer abundance, community composition, and age correlate and affect decomposition rate. Here, we targeted coarse dead wood of beech, spruce, and fir, namely snags and tree trunks (logs) in an old-growth temperate forest in central Europe; measured their decomposition rate as CO2 production in situ; and analyzed their relationships with other measured variables. Respiration rate of dead wood showed strong positive correlation with acid phosphatase activity and negative correlation with lignin content. Fungal biomass (ergosterol content) and moisture content were additional predictors. Our results indicate that dead wood traits, including tree species, age, and position (downed/standing), affected dead wood chemical properties, microbial biomass, moisture condition, and enzyme activity through changes in fungal communities and ultimately influenced the decomposition rate of dead wood.
Project description:Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests.
Project description:The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation.
Project description:Medieval era encounters of nomadic groups of the Eurasian Steppe and largely sedentary East Europeans had a variety of demographic and cultural consequences. Amongst these outcomes was the emergence of the Lipka Tatars - a Slavic-speaking Sunni-Muslim ethno-religious minority residing in modern Belarus, Lithuania and Poland, whose ancestors arrived in these territories via several migration waves, mainly from the Golden Horde. Our results show that Belarusian Lipka Tatars share a substantial part of their gene pool with Europeans as indicated by their Y-chromosomal, mitochondrial DNA and autosomal variation. Nevertheless, Belarusian Lipkas still retain a strong genetic signal of their nomadic ancestry, witnessed by the presence of common Y-chromosomal and mitochondrial DNA variants as well as autosomal segments identical by descent between Lipkas and East Eurasians from temperate and northern regions. Hence, we document Lipka Tatars as a unique example of former Medieval migrants into Central Europe, who became sedentary, changed language to Slavic, yet preserved their faith and retained, both uni- and bi-parentally, a clear genetic echo of a complex population interplay throughout the Eurasian Steppe Belt, extending from Central Europe to northern China.
Project description:Here we present genome-wide high-coverage genotyping data on a panel of 75 human samples from Western Balkan region, Europe, that are used in addition to public data in studing the genetic variation of Southern Europe that was sequenced to the avwerage depth of 1X.
Project description:A comparision of soil microbial functional genes of three types of subtropical broad-leaved forests Microbial functional structure was significantly different among SBFs (P < 0.05). Compared to the DBF and the EBF, the MBF had higher alpha-diversity of functional genes but lower beta-diversity, and showed more complex functional gene networks.