Project description:Polycyclic aromatic hydrocarbons (PAHs) are widely distributed pollutants. As in saturated PAH-contaminated sites oxygen is rapidly depleted, microorganisms able to use these compounds as a carbon source in the absence of molecular oxygen are crucial for their consumption. Here, we described the metabolic pathway for anaerobic degradation of phenanthrene by a sulfate-reducing enrichment culture (TRIP) obtained from a natural asphalt lake. The dominant organism of this culture belongs to the Desulfobacteraceae family of deltaproteobacteria. Proteogenome analysis revealed that the metabolic capacity of this bacterium includes the key enzymes for dissimilatory sulfate reduction, the Embden-Meyerhof-Parnas pathway, a complete tricarboxylic acid cycle as well as the key elements of the Wood-Ljungdahl pathway. Genes encoding enzymes potentially involved in the degradation of phenanthrene were identified in the genome of this bacterium. Two gene clusters were identified encoding a carboxylase enzyme involved in the activation of phenanthrene, as well as genes encoding reductases potentially involved in subsequent ring dearomatization and reduction steps. The predicted metabolic pathways were corroborated by transcriptome and proteome analyses and provide the first metabolic pathway for anaerobic degradation of three-rings PAHs.
Project description:Degradation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene by anaerobic microorganisms is poorly understood. Strain NaphS2, an anaerobic sulfate reducing marine delta-proteobacterium is capable of using naphthalene and the aromatic compound benzoate, as well as pyruvate, as an electron donors in the presence of sulfate. In order to identify genes involved in the naphthalene degradation pathway, we compared gene expression in NaphS2 during growth on benzoate vs. pyruvate, naphthalene vs. pyruvate, and naphthalene vs benzoate.
2010-07-22 | GSE12323 | GEO
Project description:anaerobic phenanthrene degradation denitrifying enrichment Raw sequence reads
Project description:sulfate-reducing enrichment culture Genome sequencing and assembly
| PRJNA824301 | ENA
Project description:Anaerobic biodegradation of phenanthrene and pyrene by sulfate-reducing enrichment cultures obtained from freshwater lake sediments
Project description:Degradation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene by anaerobic microorganisms is poorly understood. Strain NaphS2, an anaerobic sulfate reducing marine delta-proteobacterium is capable of using naphthalene and the aromatic compound benzoate, as well as pyruvate, as an electron donors in the presence of sulfate. In order to identify genes involved in the naphthalene degradation pathway, we compared gene expression in NaphS2 during growth on benzoate vs. pyruvate, naphthalene vs. pyruvate, and naphthalene vs benzoate. For each experimental set, aRNA from NaphS2 was labelled Cy5 (experiment) or Cy3(control) with three biological replicates hybridized in duplicate. In addition, because of the size of the predicted genome of NaphS2, ORFs were divided into two separate array designs, designated set1 and set2, such that set1 and set2 represent two separate array designs (probe sets) to be treated separately in statistical analysis.