Project description:The emergence of colistin resistance in carbapenem-resistant and extended-spectrum ß-lactamase (ESBL)-producing bacteria is a significant threat to human health, and new treatment strategies are urgently required. Here we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in several polymyxin-resistant, ESBL-producing, carbapenem resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including a ‘next generation’ polymyxin derivative, FADDI-287. To gain additional insight into the potential mechanism of action of PBT2, we analyzed the transcriptome of K. pneumoniae and E. coli in the presence of sub-inhibitory concentrations of PBT2. Treatment with PBT2 was associated with multiple stress responses in both K. pneumoniae and E. coli. Significant changes in the transcription of transition metal ion homeostasis genes were observed in both strains.
Project description:The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum -lactamase (ESBL)-producing bacteria is a critical threat to human health, and new treatment strategies are urgently required. Here, we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less-toxic next-generation polymyxin derivative, FADDI-287. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + FADDI-287 in vivo for the treatment of Gram-negative sepsis. These data present a new treatment modality to break antibiotic resistance in high priority polymyxin-resistant Gram-negative pathogens.
Project description:While ESBL and AmpC beta-lactamases barely degrade carbapenems, they are able to bind them and prevent them from interacting with penicillin binding proteins thereby preventing their effect. When these beta-lactamases are expressed at a high level and combined with a decreased influx of carbapenems due to a decrease in membrane permeability, Enterobacterales can become resistant to carbapenems. In this study we developed a LC-MS/MS assay for the detection of the E. coli porins OmpC and OmpF, it’s chromosomal AmpC beta-lactamase and the plasmid-mediated CMY-2 beta-lactamase. Subsequently, we cultured CMY-2 positive E. coli isolates in the presence of meropenem and analyzed mutants that showed increased resistance to meropenem using our developed assay and western blot. In all five selected strains, a decrease in OmpC and/or OmpF was the first event towards an increase in meropenem minimum inhibitory concentrations (MICs). Subsequently, in four of the five isolate series, MICs increased further after an increase in CMY-2-like production.