Project description:In this study we performed MeRIP-Seq to study N6-methyl adenosine (m6A) and and N6,2′ -O-dimethyladenosine (m6Am) modification of mRNA. We investigated the effect of the microbiota on the transcriptome and epitranscriptomic modifications in murine liver and cecum. We compared m6A/m modification profiles in cecum of conventionally raised (CONV) and germ-free (GF) mice. We additionally included GF mice colonised with the flora of CONV mice for four weeks (ex-GF), for which show that they exhibit similar patterns of the most abundant genera of gut bacteria as CONV mice. We added mice treated with several antibiotics to deplete the gut flora (abx)and vancomycin treated mice in which the genera Akkermansia, Escherichia/Shigella and Lactobacillus were enriched. Furthermore, we included GF mice colonised with the commensal bacterium Akkermansia muciniphila (Am), Lactobacillus plantarum (Lp) and Escherichia coli Nissle (Ec) and analysed their m6A/m modification profiles. In addition, we analysed changes in m6A/m- modified liver RNA for CONV, GF, and Am, Lp and Ec mice.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host's mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host′s mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:The intestinal microbiota modulates host physiology and gene expression via mechanisms that are not fully understood. A recently discovered layer of gene expression regulation is N6-methyladenosine (m6A) and N6,2′ -O-dimethyladenosine (m6Am) modifications of mRNA. To unveil if these epitranscriptomic marks are affected by the gut microbiota, we performed methylated RNA-immunoprecipitation and sequencing (MeRIP-seq) to examine m6A-modifications in transcripts of mice displaying either a conventional, or a modified, or no gut microbiota and discovered that the microbiota has a strong influence on m6A- modifications in the cecum, and also, albeit to a lesser extent, in the liver, affecting pathways related to metabolism, inflammatory and antimicrobial responses . We furthermore analysed expression levels of several known writer and eraser enzymes and found the methyltransferase Mettl16 to be downregulated in absence of a microbiota. As a consequence, one of its targets, the S-adenosyl methionine synthase Mat2a was less expressed in mice without gut flora. We furthermore show that distinct commensal bacteria, Akkermansia muciniphila, Lactobacillus plantarum can affect specific m6A modifications. Together, we report here epitranscriptomic modifications as an additional level of interaction in the complex interplay between commensal bacteria and their host.
Project description:N⁶-methyladenosine (m6A) and its reader, writer, and eraser (RWE) proteins assume crucial roles in regulating the splicing, stability, and translation of mRNA. To our knowledge, no systematic investigations have been conducted about the crosstalk between m6A and other modified nucleosides in RNA. Herein, we modified our recently established liquid chromatography-parallel-reaction monitoring (LC-PRM) method by incorporating stable isotope-labeled (SIL) peptides as internal or surrogate standards for profiling epitranscriptomic RWE proteins. We were able to detect reproducibly a total of 114 RWE proteins in HEK293T cells with the genes encoding m6A eraser proteins (i.e., ALKBH5, FTO) and the catalytic subunit of the major m6A writer complex (i.e., METTL3) being individually ablated. Notably, eight proteins were altered by more than 1.5-fold in the opposite directions in HEK293T cells depleted of METTL3 and ALKBH5. Analysis of published m6A mapping results revealed the presence of m6A in the corresponding mRNAs of four of these proteins. Together, we integrated SIL peptides into our LC-PRM method for quantifying epitranscriptomic RWE proteins, and our work revealed potential crosstalks between m6A and other epitranscriptomic modifications. Our modified LC-PRM method with the use of SIL peptides should be applicable for high-throughput profiling of epitranscriptomic RWE proteins in other cell types and in tissues.
Project description:A recently layer of gene expression regulation is N6-methyladenosine (m6A) mRNA modification. The role of gut microbiota in modulating host m6A epitranscriptomic and gene expression has not been studied. To decipher the role of gut microbiome, we profiled m6A mRNA modification epitranscriptomic mark in conventional mice compared to germ free mice. Transcriptome-wide mapping of host m6A mRNA modifications in four mice tissues allowed us to discover that gut microbiota can greatly impact host m6A mRNA modifications. The expression levels of m6A writers in mice tissues are regulated by gut microbiota. In conclusion, we report transcriptome-wide mapping of host m6A mRNA modifications regulated by gut microbiota. The present study can help better understand the role of the microbiome in host gene expression and host-microbiome interactions.
Project description:Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer and shows high morbidity and mortality rates as well as poor prognosis. However, there is still an urgent need to provide more effective biomarkers for the early diagnosis, prognosis and monitoring of LUAD. The Arraystar Human M6a-MRNA&lncRNA Epitranscriptomic microarray analysis was performed on six pairs of LUAD tissues and adjacent non-tumor tissues to compare and screen the M6a marker of LUAD, thus may offer a new avenue of targets and strategies for LUAD diagnosis and treatment.
Project description:The samples of human liver tissues from the healthy donors, the HBV-infected patients without cirrhosis, and the HBV-infected patients with cirrhosis were collected. The tissues were then analyzed by the m6A-mRNA&lncRNA Epitranscriptomic miroarray. The Goal of this experiment was to determine the different of gene expression and m6a methylation of liver tissues among the healthy donors, the HBV-infected patients with and without cirrhosis.
Project description:16S analysis of the project designed to study the role for gut microbiota in m6A/m epitranscriptomic mRNA modifications in different host tissues. We performed 4 different 16S analysis to investigate the most abundant genera of different mice cecal content.