Project description:Hanwoo cattle are a Korean breed renowned for their cultural significance and high-quality beef, characterized by low cholesterol and high unsaturated fat ratio. Growth is divided into a growing phase focused on development and a fattening phase for marbling. Proper feed management, considering genetic and environmental factors, is vital for maximizing growth potential. The rumen plays a crucial role in digestion and gene expression regulation, with rumen fermentation being central to nutrient absorption and cattle health. In this study, we conduct transcriptome analysis of the rumen at eight timepoints. Our goal is to identify genetic factors that influence the growth of Hanwoo steers to enhance our understanding of the rumen’s functions and roles during their growth. In this RNA-sequencing analysis of Hanwoo steer rumen, differential gene expression was examined over eight timepoints, highlighting significant genetic changes, particularly between 12 and 26 months. Weighted gene co-expression network analysis identified and organized as three modules: turquoise, blue, and yellow. The turquoise module, linked to immune response, showed down-regulation in genes at 30 months. The blue module, associated with steroid metabolism, was notably up-regulated at 26 months. The yellow module’s genes showed a consistent increase in expression with growth. These modules and their functional annotations provide a deeper understanding of the biological processes during Hanwoo growth, highlighting the intricate relationship between gene expression and cattle development. The growth stages of Hanwoo steers were explored in our investigation utilizing rumen transcriptome data. The rumen plays critical role in their development, particularly during the growing and fattening phases. Proper feed management, considering the rumen’s function, is essential for optimal growth. Transcriptome analysis helps identify genes associated with growth and provides insights for cattle breeding and management practices. Understanding the complex connection between gene expression and Hanwoo development is essential for maximizing productivity and health.
Project description:Investigation of whole genome gene expression level changes in rumen epithelium of dairy cattle at different stages of rumen development and on different diets.
Project description:As the unique organ, rumen plays vital roles in providing products for humans, however, the underlying cell composition and interactions with epithelium-attached microbes remain largely unknown. Herein, we performed an integrated analysis in single-cell transcriptome, epithelial microbiome, and metabolome of rumen tissues to explore the differences of microbiota-host crosstalk between newborn and adult cattle models. We found that fewer epithelial cell subtypes and more abundant immune cells (e.g., Th17 cells) in the rumen tissue of adult cattle. Metabolism-related functions and oxidation-reduction process were significantly upregulated in the adult rumen epithelial cell subtypes. The epithelial Desulfovibrio was significantly enriched in the adult cattle. To further clarify the role of Desulfovibrio in host’s oxidation-reduction process, we performed metabolomics analysis of rumen tissues and found that Desulfovibrio showed a high co-occurrence probability with the pyridoxal in the adult cattle compared with newborn ones. The adult rumen epithelial cell subtypes also showed stronger ability of pyridoxal binding. These indicates that Desulfovibrio and pyridoxal likely play important roles in maintaining redox balance in adult rumen. The integrated analysis provides novel insights into the understanding of rumen function and facilitate the future precision improvement of rumen function and milk/meat production in cattle.
Project description:This study identifies key microbiome and epithelial cell subtypes involved in grass digestion and VFA metabolism in the rumen. By integrating multi-omic data, we reveal novel links between microbial activity, epithelial cell function, and grassland foraging, providing critical insights into mechanisms underlying grass prevalence and their implications for optimizing ruminant health and productivity. This research enhances our understanding of the grass-microbiome- rumen axis and its role in sustainable grazing systems.
Project description:Microbiome DNA from the adhering fraction of a sheep rumen. The RSTs were generated using an improved version of SARST (referred to as iSARST) from the microbiome DNA extracted from the adhering fraction of the rumen content taken from a sheep. The iSARST method is going to be submitted to Nature Biotechnology for publication. Keywords: other
Project description:Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome27 centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprises an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.
Project description:Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome27 centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprises an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting- 37 animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.
Project description:The time-resolved impact of monensin on the active rumen microbiome in a rumen-simulating technique (Rusitec) was studied with metaproteomic and metabolomic approaches. Upon monensin treatment, decreased catabolism linked to fiber degradation was observed by the reduced abundance of proteins assigned to fibrolytic bacteria and glycoside hydrolases, sugar transporters and carbohydrate metabolism. Reduced amounts of ammonium as well as branched-chain fatty acids pointed towards a decreased proteolytic activity. The family Prevotellaceae exhibited increased resilience in the presence of monensin, with a switch of metabolism from acetate to succinate production. Prevotella species harbor a membrane bound electron transfer complex, which drives the reduction of fumarate to succinate, the substrate for propionate production in the rumen habitat. Besides the increased succinate production, a concomitant depletion of methane concentration was observed upon monensin exposure. Our study demonstrates that Prevotella sp. shifts its metabolism successfully in response to monensin exposure and Prevotellaceae represents the key bacterial family stabilizing the rumen microbiota during exposure to monensin.