Project description:Trimethylamine (TMA) is an important gut microbial metabolite strongly associated with human disease. There are prominent gaps in our understanding of how TMA is produced from the essential dietary nutrient L-carnitine, particularly in the anoxic environment of the human gut where oxygen-dependent L-carnitine-metabolizing enzymes are likely inactive. Here, we elucidate the chemical and genetic basis for anaerobic TMA generation from the L-carnitine-derived metabolite γ-butyrobetaine (γbb) by the human gut bacterium Emergencia timonensis. We identify a set of genes upregulated by γbb and demonstrate that the enzymes encoded by the induced γbb utilization (bbu) gene cluster convert γbb to TMA. The key TMA-generating step is catalyzed by a previously unknown type of TMA-lyase enzyme that utilizes a flavin cofactor to catalyze a redox neutral transformation. We identify additional cultured and uncultured host-associated bacteria that possess the bbu gene cluster, providing insights into the distribution of anaerobic γbb metabolism. Lastly, we present genetic, transcriptional, and metabolomic evidence that confirms the relevance of this metabolic pathway in the human gut microbiota. These analyses indicate that the anaerobic pathway is a more substantial contributor to TMA generation from L-carnitine in the human gut than the previously proposed aerobic pathway. The discovery and characterization of the bbu pathway provides the critical missing link in anaerobic metabolism of L-carnitine to TMA, enabling investigation into the connection between this microbial function and human disease.
Project description:Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice, and positively correlates with the severity of this disease in human. However, which microbes contribute to TMA production in the human gut; the extent to which host factors, e.g., genotype and diet, affect TMA production and colonization of these microbes; as well as the effects TMA-producing microbes have on bioavailability of dietary choline remain largely unknown. We screened a collection of 78 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified eight strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization of TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest the TMA producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans.
Project description:BACKGROUND & AIMS: There is mounting evidence that microbes resident in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcoholic hepatitis (AH). However, mechanisms by which gut microbiota synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested. METHODS: We used liquid chromatography tandem mass spectrometry to quantify the levels of microbe and host choline co-metabolites in healthy controls and AH patients, and identified the metabolite trimethylamine (TMA) as a gut microbe-derived biomarker of AH. In subsequent studies, we treated mice with non-lethal mechanism-based bacterial choline TMA lyase inhibitors to blunt gut microbe-dependent production of TMA in the context of chronic ethanol administration. Indices of liver injury were quantified by complementary RNA sequencing, biochemical, and histological approaches. In addition, we examined the impact of ethanol consumption and TMA lyase inhibition on gut microbiome structure via 16S rRNA sequencing. RESULTS: We show the gut microbial choline metabolite trimethylamine (TMA) is elevated in AH patients, which is correlated with reduced hepatic expression of the TMA oxygenase flavin-containing monooxygenase 3 (FMO3). Provocatively, we find that small molecule inhibition of gut microbial choline TMA lyase activity protects mice from ethanol-induced liver injury. TMA lyase inhibitor-driven improvement in ethanol-induced liver injury is associated with distinct reorganization of the gut microbiome community and host liver transcriptome. CONCLUSIONS: The microbial metabolite TMA is a biomarker of AH, and blocking TMA production from gut microbes can blunt ALD in mice.
Project description:The effect of nitrate reduction (anaerobic cultivation in the presence of heme, vitamin K2 and nitrate) was compared with anaerobic cultivation supplemented with citrate (Lactobacillus plantarum). The medium was chemically defined medium with mannitol as main carbon source