Project description:Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, in recent years histone proteins have been identified in a few bacterial clades, in particular the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared to histones in archaea and eukaryotes. However, no experimental functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription and three-dimensional genome organization in a member of Bdellovibrionota (a Bacteriovorax strain). We find that Bacteriovorax chromatin is characterized by preferential accessibility around promoter regions, similar to what is observed in eukaryotes with compact genomes such as yeast, and also to some archaea. As in eukaryotes, chromatin accessibility positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that Bacteriovorax promoters exhibit very strong polymerase pausing, unlike in yeast, but similar to the state of mammalian and fly promoters. Finally, the Bacteriovorax genome exists in a three-dimensional (3D) conformation analogous to that of other bacteria without histones, organized by the parABS system and along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the deep evolution of chromatin organization across the tree of life.
Project description:The involvement of microorganisms in carbonate minerals and modern dolomite formation in evaporitic environments occupied with microbial mats (i.e., sabkha) and in mangrove forests is evidenced, while its potential diversity requires further elucidation. Microorganisms can create supersaturated microenvironments facilitating the formation of various carbonate minerals through specific metabolic pathways. This is particularly important in arid environments, where deposition and sedimentary structures can occur. This study investigated the biodiversity of halophilic, heterotrophic, and aerobic mineral-forming bacteria in mangrove forests and living and decaying mats of Qatari sabkha. The diversity study was performed at the protein level using MALDI-TOF mass spectrometry protein profiles combined with principal component analysis (PCA), which revealed a high diversity of isolated strains at the taxonomy and protein profile levels. The diversity of the minerals formed in pure cultures was evidenced by SEM/EDS and XRD analysis. Different types of carbonate minerals (calcium carbonate, magnesium carbonates, and high-magnesium calcites) were formed in pure cultures of the studied strains, which might explain their occurrence in the bulk composition of the sediments from where the strains were isolated. These results illuminate the diversity of biological mineral-formation processes in the extreme environments of Qatari sabkhas and mangroves, explaining the high diversity of minerals in these environments.
Project description:While cultivation is a convenient way of proliferating and understanding bacteria, studies have shown the formation of nonculturable cells in nonspore-forming bacteria in response to environmental stress and thus in turn have generated immense interest. Whether these cells are in a state of dormancy or in a stage preceding cell death has been considered of paramount importance for the past couple of decades. In this study, osmotic-stress-induced dormant bacterial cells were separated by cell sorting and revived by osmotic down-shift in the absence of nutrients, source(s) that potentially could supply nutrients, and/or the external addition of resuscitation factor(s). Reversal of dormancy followed a definite pattern akin to population asynchrony of dormant cells, and the phenomenon was observed across three species, namely, Enterobacter sp. strain mcp11b, Klebsiella pneumonia strain mcp11d and Escherichia coli. In addition, our study precisely forecasted the presence of multiple subpopulations in dormant cells, which is explained by an emerging theory of survival mechanisms in stressful environments. These observations reveal that the state of dormancy induced by environmental stress in these nonspore-forming bacteria is "reversible" and also implies that it is an orderly and spontaneous adaptation to circumvent adverse conditions.