Project description:The iconic giant panda is an endangered species known worldwide for its peculiar dietary habits. While retaining the digestive system of a carnivore, the giant panda successfully moved into a diet almost exclusively based on bamboo. Digestion of lignocellulose is believed to be conducted solely by its gut microbiome, provided that no lignocellulose-degrading enzyme was found in the giant panda’s genome. Many reports focused on which lignocellulose component feeds the giant panda, while little effort was made to link the products of bamboo fermentation to the panda’s dietary choices. In the present study, fermentation of either green leaves or yellow pith was conducted in the laboratory using gut microbiomes derived from either green or yellow stools, respectively. Green leaves were fermented to ethanol, lactate and acetate, while yellow pith to lactate resembling, respectively, hetero/homo-fermentation patterns. Several microbial pathways (assessed by metaproteomics) related to hemicellulose rather than cellulose degradation. However, alpha-amylases (E.C. 3.2.1.1) from the giant panda itself were the most predominant enzyme (up to 60% of all metaproteins), indicating that they have a primary role in bamboo digestion. The distinct fermentation profiles resulting from digestion of selected portions of bamboo may be part of the feeding strategy of giant pandas.
Project description:In this study, differentially expressed (DE)piRNAs of fresh and frozen-thawed sperm with different freeze tolerance compacity from giant panda and boar were evaluated. The results showed 1160 (22 down-regulated and 1138 up-regulated) and 384 (110 up-regulated and 274 down-regulated) differentially expressed (DE) piRNAs were identified in giant panda and boar sperm, respectively. Gene ontology (GO) enrichment analysis revealed that the target DE mRNAs of DE piRNAs were mainly enriched in biological regulation, cellular process and metabolic process in giant panda and boar sperm. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the target DE mRNAs of DE piRNAs were only distributed on DNA replication and cAMP signaling pathway in giant panda, but cAMP, cGMP and MAPK signaling pathway in boar sperm which were considered as part of olfactory transduction pathway.Conclusion:Olfactory transduction related pathways maybe contributed to different freeze tolerance compacity between giant panda and boar sperm, which will benefit to further understand the molecular mechanism of sperm cryoinjury and freezability.
Project description:The giant panda (Ailuropoda melanoleuca) stands as a flagship and umbrella species, symbolizing global biodiversity. While traditional assisted reproductive technology faces constraints in safeguarding the genetic diversity of giant pandas and bolstering the population size of giant pandas, induced pluripotent stem cells (iPSCs) known for their capacity to differentiate into diverse cells types, including germ cells, present a transformative potential for conservation of endangered animals. In our study, we isolated primary fibroblast cells from an individual giant panda and successfully generated giant panda induced pluripotent stem cells (GPiPSCs) through a non-integrating episomal vectors reprogramming method. Characterization of these GPiPSCs revealed their state of primed pluripotency and demonstrated their potential for differentiation. Furthermore, we innovatively formulated a species-specific chemically defined FACL medium and unraveled the intricate signaling pathway networks responsible for maintaining the pluripotency and fostering cell proliferation of GPiPSCs. This study provides key insights into rare species iPSCs, offering materials for panda characteristics research and laying the groundwork for in vitro giant panda gamete generation, potentially aiding endangered species conservation.
Project description:Giant panda are carnivorous bears which feed almost exclusively on plant biomass (i.e. bamboo). The potential contribution of its gut microbiome to lignocellulose degradation has been mostly investigated with cultivation-independent approaches. Recently, we reported on the first lab-scale cultivation of giant panda gut microbiomes and described their actual fermentation capacity. Fermentation of bamboo leaf using green dung resulted in a neutral pH, the main products being ethanol, lactate and H2. Fermentation of bamboo pith using yellow dung resulted in an acidic pH, the main product being lactate. Here, we cultivated giant panda gut microbiomes to test 1) the impact of mixed dung as inoculum; 2) the fermentation capacity of solid lignocellulose as opposed to organics-rich biofluids in the dung; 3) the artificial shift of pH from neutral to acidic on bamboo leaf fermentation. Our results indicate that i) gut microbiomes fermentation of solid lignocellulose contributes up to a maximum of 1/3 even in the presence of organics-rich biofluids; ii) alcohols are an important product of bamboo leaf fermentation at neutral pH; iii) aside hemicellulose, gut microbiomes may degrade plant cell membranes to produce glycerol; iv) pH, rather than portion of bamboo, ultimately determines fermentation profiles and gut microbiome assemblage.
Project description:Purpose:To present the miRNA expression profiles in giant panda milk exosomes across five lactation stages (0, 3, 7, 15 and 30 days after birth), aiming to provide new information for investigations into the physiological functions of the giant panda milk Methods: Three females were sampled in all, and each individual were sampled over multiple lactations, including 0, 3, 7, 15 and 30 days after delivery. Breast milk samples (5-10 ml) were collected from each stages. Total RNA isolated from individuals in five lactation stages (0, 7, 15 and 30 days after delivery) were pooled in equal quantities for each stage Results: Here, we illustrated the species and expression characteristics of exosome-loaded miRNAs existing in giant panda breast milk during distinct lactation periods, and highlighted the enrichment of immune- and development-related endogenous miRNAs in colostral and mature giant panda milk, which are stable even in certain hash conditions, like low pH and high concentration of RNAase, by the protection of extracellular vesicles.These findings indicate that breast milk may allow dietary intake of maternal miRNAs by infants for the regulation of postnatal development. We also demonstrated that the exogenous plant miRNA from the primary food source of giant panda (bamboo) were detected in the exosomes of giant panda breast milk, which were predicted to be of regulatory role in basic cell metabolism and neuron development. This result suggested that the dietary plant miRNAs were able to be absorbed by host cell and then secreted to body fluids as potential cross-kingdom regulators. Conclusions: Exosomal miRNAs in the giant panda breast milk may be the crucial maternal regulators for the development of intrinsic ‘slink’ newborn cubs.