Project description:Over the last decades, endophytic fungi represent a new source of pharmacologically active secondary metabolites based on the underlying assumption that they live symbiotically within their plant host. In the present study, a new endophytic fungus was isolated from Rauwolfia macrophylla, a medicinal plant from Cameroon. The fungus showed a highest homology to Curvularia sp. based on complete nucleotide sequence data generated from the internal transcribed spacer (ITS) of ribosomal DNA region. Large scale fermentation, working-up and separation of the strain extract using different chromatographic techniques afforded three bioactive compounds: 2'-deoxyribolactone (1), hexylitaconic acid (2) and ergosterol (3). The chemical structures of compounds 1-3 were confirmed by 1 and 2D NMR spectroscopy and mass spectrometry, and comparison with corresponding literature data. Biologically, the antimicrobial, antioxidant activities and the acetylcholinesterase inhibitory of the isolated compounds were studied.
Project description:We conducted a comprehensive screening of bioactive compounds sourced from natural products, specifically targeting those capable of inducing apoptosis while inhibiting tyrosine kinase activity. Our investigation encompassed a diverse range of compounds, including pure compounds, compound mixtures, and peptides, all evaluated within the A549 cell line. To delve into the underlying molecular mechanisms, we employed phosphoproteomics analysis, which enabled us to comprehensively assess the impact of these bioactive compounds on cellular pathways. Through labeling digested proteins with distinct isobaric tags, we meticulously examined the cellular response to each compound. In our experimental design, we included two established chemical drugs, Afatinib and Osimertinib, serving as positive controls. These drugs, both kinase inhibitors utilized in cancer treatment, operate via distinct mechanisms and target different kinases. By comparing the effects of our test compounds with these controls, we aimed to elucidate their potential therapeutic relevance and mechanisms of action. Among the compounds examined were extracts from Phallus indusiatus and Fomes rimosus (Berk.) Cooke, as well as specific compounds like Chamuangone, Cannabigerol (CBG), Cannabidiol (CBD), and NP1-cyclic peptide
Project description:Mangroves are ecosystems with unique characteristics due to the high salinity and amount of organic matter that house a rich biodiversity. Fungi have aroused much interest as they are an important natural source for the discovery of new bioactive compounds, with potential biotechnological and pharmacological interest. This review aims to highlight endophytic fungi isolated from mangrove plant species and the isolated bioactive compounds and their bioactivity against protozoa, bacteria and pathogenic viruses. Knowledge about this type of ecosystem is of great relevance for its preservation and as a source of new molecules for the control of pathogens that may be of importance for human, animal and environmental health.
Project description:Various bioactive food compounds may confer health and longevity benefits, possibly through altering or preserving the human epigenome. While bioactive food compounds are widely being marketed as ‘improving health and longevity’ by counteracting harmful effects of poor nutrition and lifestyle, claimed effects are often not adequately documented. Using the honey bee (Apis mellifera) as a model species, we here employed a multi-step screening approach to investigate seven compounds for effects on lifespan and DNA methylation using ELISA and whole genome bisulfite sequencing (WGBS). A positive longevity effect was detected for valproic acid, isovaleric acid, and cyanocobalamin. For curcumin, we found that lifespan shortening caused by ethanol intake, was restored when curcumin and ethanol were co-administered. Furthermore, we identified region specific DNA methylation changes as a result of ethanol intake. Ethanol specific changes in DNA methylation were fully or partially blocked in honey bees receiving ethanol and curcumin together. Ethanol-affected and curcumin-blocked differentially methylated regions covered genes involved in fertility, temperature regulation and tubulin transport. Our results demonstrate fundamental negative effects of low dose ethanol consumption on lifespan and associated DNA methylation changes and present a proof-of-principle on how longevity and DNA methylation changes can be negated by the bioactive food component curcumin. Our findings provide a fundament for further studies of curcumin in mice and humans and offer an avenue to explore regarding possible prevention of health issues related to alcohol consumption.
Project description:Endophytic fungi are now recognized as sources of pharmacologically beneficial, novel bioactive compounds. This study was carried out to evaluate antiproliferative and antioxidative potential of a seaweed endophytic fungus Talaromyces purpureogenus. Extracts with different solvents of the fungus grown on different liquid media were assayed for the antiproliferative and antioxidative activities. Tested 6 cancer cell lines, the highest antiproliferative activity was observed in ethyl acetate extract of total culture grown in Potato Dextrose Broth for 28 days in a dose-dependent manner. The highest antioxidative activity was observed in hexane extract of fungal culture grown in Malt Extract Broth for 21 days. Analyzed for secondary metabolites, the extract revealed the presence of phenolics, alkaloids, flavonoids, steroids and terpenoids. Further, Gas Chromatography Mass Spectroscopy (GCMS) analysis of the extract revealed the presence of several compounds including 3-nitropropanoic acid, 4H-pyran-4-one 5-hydroxy-2-(hydroxymethyl), hexadecanoic acid, and octadecanoic acid, known to be cytotoxic or antioxidative. Among different cell lines tested, HeLa cells were the most vulnerable to the treatment of the fungal extract with an IC50 value of 101 ± 1 μg/mL. The extract showed no significant cytotoxicity to the normal human embryonic kidney cell line (HEK 293 T) in the MTT assay. The ethyl acetate extract induced membrane damage and mitochondrial depolarization and thereby apoptosis and cytotoxicity in HeLa cells. The study marks marine-derived endophytes as potential sources for discovery of novel drugs.