Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:Fosfomycin is a bactericidal antibiotic, analogous to phosphoenolpyruvate (PEP) that exerts its activity by inhibiting the activity of MurA. This enzyme catalyzes the first step of peptidoglycan biosynthesis, the transfer of enolpyruvate from PEP to uridine- diphosphate-N-acetylglucosamine. Fosfomycin is increasingly used in the last years, mainly for treating infections caused by Gram-negative multidrug resistant bacteria as Stenotrophomonas maltophilia, an opportunistic pathogen characterized by its low susceptibility to antibiotics of common use. The mechanisms of mutational resistance to fosfomycin in Stenotrophomonas maltophilia were studied in the current work. None of the mechanisms so far described for other organisms, which include the production of fosfomycin inactivating enzymes, target modification, induction of alternative peptidoglycan biosynthesis pathway and the impaired entrance of the antibiotic, are involved in the acquisition of such resistance by this bacterial species. Rather the unique cause of resistance in the studied mutants is the mutational inactivation of different enzymes belonging to the Embden-Meyerhof-Parnas central metabolism pathway. The amount of intracellular fosfomycin accumulation did not change in any of these mutants showing that neither the inactivation nor the transport of the antibiotic were involved. Transcriptomic analysis also showed that the mutants did not present changes in the expression level of putative alternative peptidoglycan biosynthesis pathway genes neither any related enzyme. Finally, the mutants did not present an increased PEP concentration that might compete with fosfomycin for its binding to MurA. Based on these results, we describe a completely novel mechanism of antibiotic resistance based on the remodeling of S. maltophilia metabolism.
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humans’ age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humansM-bM-^@M-^Y age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports The antibiotic resistance gene microarray is custom-designed (Roche NimbleGen), based on a single chip containing 3 internal replicated probe sets of 12 probes per resistance gene, covering the whole 315K 12-plex platform spots.
Project description:Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known and novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. Keywords: detection, pathogen, virulence mechanism In this report, we describe the process used to design our first generation functional array for highly sensitive detection of virulence and antibiotic resistance gene families. We discuss the probe design algorithms, including virulence gene sequence selection, and our protocols for sample preparation, amplification, labeling, hybridization, and data analysis. We present the results from experiments designed to assess whether the array can detect virulence gene orthologs from organisms without perfect match probes on the array, using both targeted mismatch probes and hybridizations to DNA from other organisms. Also, we report the results from limit of detection studies, using known amounts of bacterial DNA spiked into aerosol samples to measure the minimal concentration required for detection of virulence elements against a complex background.
Project description:Understanding constraints which shape antibiotic resistance is key for predicting and controlling drug resistance. Here, we performed high-throughput laboratory evolution of Escherichia coli. The transcriptome, resistance, and genomic profiles for the evolved strains in 48 environments were quantitatively analyzed. By analyzing the quantitative datasets through interpretable machine learning techniques, the emergence of low dimensional phenotypic states within the 192 strains was observed. Further analysis revealed the underlying biological processes responsible for the distinct states. We also report a novel constraint which leads to decelerated evolution. These findings bridge the genotypic, gene expression, and drug resistance space, and lead to a comprehensive understanding of constraints for antibiotic resistance.
Project description:Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known and novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. Keywords: detection, pathogen, virulence mechanism
Project description:Bacteria often evolve antibiotic resistance through mutagenesis. However, the processes causing the mutagenesis have not been fully resolved. Here we found that a broad range of ribosome-targeting antibiotics caused mutations through an underexplored pathway. Focusing on the clinically important aminoglycoside gentamicin, we found that the translation inhibitor caused genome-wide premature stalling of RNA polymerase (RNAP) in a loci-dependent manner. Further analysis showed that the stalling was caused by disruption of transcription-translation coupling. Anti-intuitively, the stalled RNAPs subsequently induced lesions to the DNA via transcription-coupled repair. While most of the bacteria were killed by genotoxicity, a small subpopulation acquired mutations via SOS-induced mutagenesis. Given that these processes were triggered shortly after antibiotic addition, resistance rapidly emerged in the population. Our work revealed a new mechanism of action of ribosomal antibiotics, illustrates the importance of dissecting the complex interplay between multiple molecular processes in understanding antibiotic efficacy, and suggests new strategies for countering the development of resistance.