Project description:RNA-Seq analysis of mouse cardiac transcriptome. Transverse aortic contraction was used to induce cardiac hypertrophy (TAC). To compare wild type and physiological cardiac hypertrophy 'Sendetary' (feeding mouse during 4 weeks) and 'Swim (exercise training to induce the cardiac hypertrophy) samples were analysed.
Project description:Here, we performed pathological cardiac hypertrophy transcriptome analyses by using heart tissue from Sham or TAC surgery to identify the charecteric in pathological cardiac hypertrophy. In addition, through combined analysis with the aging-associated transcriptome to identify the similarity and difference between heart ageing and pathological cardiac hypertrophy.
Project description:Cardiac hypertrophy has been well-characterized at the level of transcription. During cardiac hypertrophy, genes normally expressed primarily during fetal heart development are re-expressed, and this fetal gene program is believed to be a critical component of the hypertrophic process. Recently, alternative splicing of mRNA transcripts has been shown to be temporally regulated during heart development, leading us to consider whether fetal patterns of splicing also reappear during hypertrophy.We hypothesized that patterns of alternative splicing occurring during heart development are recapitulated during cardiac hypertrophy. Here we present a whole-transcriptome study of isoform expression during pressure-overload cardiac hypertrophy induced by 10 days of transverse aortic constriction (TAC) in rats and in developing fetal rat hearts compared to sham-operated adult rat hearts, using high-throughput sequencing of poly(A) tail mRNA. Quantification of isoform expression in fetal rat hearts, pressure-overloaded rat hearts, and sham-operated rat hearts by Illumina GAIIx in triplicate
Project description:Cardiac hypertrophy is an important and independent risk factor for the development of cardiac myopathy that may lead to heart failure. Cardiac hypertrophy manifests as an enlargement of the individual cardiomyocytes, which impairs the function of the heart. The only way to cure end-stage cardiac myopathy is by heart transplantation, a possibility limited due to lack of donor hearts. Therefore, early diagnosis of cardiac hypertrophy is needed in order to be able to initiate interventions that may prevent further progression of the disease. The mechanisms underlying the development of cardiac hypertrophy are yet not well understood. To increase the knowledge about mechanisms and regulatory pathways involved in the progression of cardiac hypertrophy, we have developed a human induced pluripotent stem cell (hiPSC)-based in vitro model of cardiac hypertrophy and performed extensive characterization of the model using multi-omics analyses. In a series of experiments, hiPSC-derived cardiomyocytes were stimulated with Endothelin-1 for 8, 24, 48 and 72 hours and their transcriptome and secreted proteome were analyzed thoroughly. The transcriptomic data show many enriched canonical pathways related to cardiac hypertrophy already at the earliest time point, e.g., cardiac hypertrophy signaling, actin cytoskeleton signaling and PI3K/AKT signaling. Cluster analysis of the differentially expressed genes showed that there are numerous clusters of genes that are dysregulated over the time period of 8 to 72h. An integrated transcriptome-secretome analysis enabled the identification of multimodal biomarkers of high relevance for monitoring early cardiac hypertrophy progression. Taken together, the results from this study demonstrate that our in vitro model displays a hypertrophic response on transcriptomic- and secreted proteomic level. The results also provide novel insight into the underlying mechanisms of cardiac hypertrophy and novel putative early cardiac hypertrophy biomarkers have been identified that will be further validated to assess their clinical relevance.
Project description:Regulatory factors play important roles in cardiac hypertrophy by regulating gene expression in cardiomyocytes.HSP70, a heat shock protein encoded by HSPA1A ,is induced by hypertrophic stimulation and then causes cardiac hypertrophy. However, the regulation mechanism of HSP70 in cardiac hypertrophy is unknown. In this study, we established the cardiac hypertrophy mouse model to explore the differentially expressed genes and found Hspa1a was significantly increased in treated samples. Then Hspa1a was overexpressed in mouse cardiac HL-1 cells and we analyzed the changes of transcriptome expression by high throughput sequencing. The results showed that HSPA1A selectively regulates the expression of ncRNAs (Rn7sk,Rmrp), negatively regulates the expression of genes involved in inflammatory and immune response, including Cxcl1,Ccl2,Ccl7,Cxcl5, Fas andC3, which were also validated by RT-qPCR experiment. The HSPA1A-regulated genes and ncRNAs are highly associated with cardiac hypertrophy. Alternative splicing analysis revealed HSPA1A preferred to regulate genes enriched in transcriptional regulation, including Asxl2 and Runx1. These results indicate that the heat shock protein-HSPA1A may play a role in the occurrence and development of myocardial hypertrophy by regulating the expression of immune inflammatory response related pathway genes and ncRNAs related to myocardial hypertrophy.
Project description:Cardiac hypertrophy consists in the enlargement of cardiomyocytes and alteration of the extracellular matrix organization in response to physiological or pathological stress. In pathological hypertrophy ocuurs myocardial damage, loss of cardiomyocytes, fibrosis, inflammation, sarcomere disorganization and metabolic impairment, leading to cardiac dysfunction.The rodent model treated with isoproterenol induces cardiac hypertrophy due the constant activation of β-adrenergic receptors. We conducted a quantitative label-free proteomic analysis of cardiomyocytes isolated from hearts of mice treated or not with isoproterenol to better understand the molecular bases of cellular response due to isoproterenol-induced injury.
Project description:Cardiac hypertrophy has been well-characterized at the level of transcription. During cardiac hypertrophy, genes normally expressed primarily during fetal heart development are re-expressed, and this fetal gene program is believed to be a critical component of the hypertrophic process. Recently, alternative splicing of mRNA transcripts has been shown to be temporally regulated during heart development, leading us to consider whether fetal patterns of splicing also reappear during hypertrophy.We hypothesized that patterns of alternative splicing occurring during heart development are recapitulated during cardiac hypertrophy. Here we present a whole-transcriptome study of isoform expression during pressure-overload cardiac hypertrophy induced by 10 days of transverse aortic constriction (TAC) in rats and in developing fetal rat hearts compared to sham-operated adult rat hearts, using high-throughput sequencing of poly(A) tail mRNA.