Project description:Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a novel FP-RMS mouse model driven by P3F expression and CDKN2A loss in endothelial cells. Additionally, we show that P3F expression in p53 null human iPSCs blocks endothelial directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.
Project description:We purposed to examine the effect of PGF receptor FP in development of ; bleomycin-induced pulmonary fibrosis in mice. We performed gene ; expression analysis in the lung of WT and FP-KO mice on Days 0, 7 and ; 14. We found out that fibrosis-related genes such as various isoforms ; of collagen, which were induced on Day 7 and continued to increase or ; remained unchanged on Day 14, were induced to less extent in FP-KO ; mice. In contrast, expression of inflammation-related genes peaked on ; Day 7 similarly in WT and FP-KO mice. These results suggest that FP ; functions in fibrosis-phase, not in peak inflammation phase, and ; facilitates fibrogenesis by enhancing expression of fibrosis-related ; genes. Experiment Overall Design: RNA was prepared from the lung of WT and FP-KO mice on Day 0, 7 and 14 Experiment Overall Design: (n=4-5 for each group at each time point) after bleomycin instillation, Experiment Overall Design: and used for hybridization with Affymetrics mouse 430 2.0 microarrays. Experiment Overall Design: Time-dependent changes in expression of genes in FP-KO mice were Experiment Overall Design: compared with those in WT mice.
Project description:Even though feather pecking (FP) in laying hens has been extensively studied, a good solution to prevent chickens from this behavior under commercial circumstances has not been found. Selection against FP behavior is possible, but for a more effective selection across different populations, it is necessary to characterize the genetic mechanism associated with this behavior. In this study, we use a high FP selection line, which has been selected for 8 generations. We present evidence of the presence of a major dominant allele affecting the FP behavior by using an argument based on the presence of mixture in the distribution of the observed FP and by studying the evolution of the proportion of very high FP along the sequence of 8 generations. This hypothesis is further supported by the fact that the gene transcription profile of the birds performing high FP differs from the profile of the other birds performing FP (456 genes differentially expressed from a total of 14,077 investigated genes). Keywords: severe feather pecking , selection , modeling , inheritance pattern From each selection line (high feather pecking line, low feather pecking line and control line) 60 animals were randomly selected. Within each line the birds were randomly assigned to a cage of 20. The cages were kept in a randomized block design. Number of samples analyzed in total: 179 (60 high feather pecking line, 60 low feather pecking line, 59 control line samples. Common reference design using total-RNA purified from brain from a single F1 cross between the high and low feather pecking line as reference.
Project description:Even though feather pecking (FP) in laying hens has been extensively studied, a good solution to prevent chickens from this behavior under commercial circumstances has not been found. Selection against FP behavior is possible, but for a more effective selection across different populations, it is necessary to characterize the genetic mechanism associated with this behavior. In this study, we use a high FP selection line, which has been selected for 8 generations. We present evidence of the presence of a major dominant allele affecting the FP behavior by using an argument based on the presence of mixture in the distribution of the observed FP and by studying the evolution of the proportion of very high FP along the sequence of 8 generations. This hypothesis is further supported by the fact that the gene transcription profile of the birds performing high FP differs from the profile of the other birds performing FP (456 genes differentially expressed from a total of 14,077 investigated genes). Keywords: severe feather pecking , selection , modeling , inheritance pattern
Project description:Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.
Project description:Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.
Project description:Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a novel FP-RMS mouse model driven by P3F expression and CDKN2A loss in endothelial cells. Additionally, we show that P3F expression in p53 null human iPSCs blocks endothelial directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.
Project description:Rhabdomyosarcoma (RMS), a malignancy of impaired myogenic differentiation, is the most common soft tissue pediatric cancer. PAX3-FOXO1 oncofusions drive the majority of the clinically more aggressive fusion-positive rhabdomyosarcoma (FP-RMS). Recent studies have established an epigenetic basis for PAX3-FOXO1-driven oncogenic processes. However, details of PAX3-FOXO1 epigenetic mechanisms, including interactions with, and dependence on, other chromatin and transcription factors, are incompletely understood. We previously identified a novel disease-promoting epigenetic axis in RMS, involving the histone demethylase KDM3A and the ETS1 transcription factor, and demonstrated that this epigenetic axis interfaces with PAX3-FOXO1 both phenotypically and transcriptomically, including co-regulation of biological processes and genes important to FP-RMS progression. In this study, we demonstrate that KDM3A and ETS1 colocalize with PAX3-FOXO1 to enhancers of important disease-promoting genes in FP-RMS, including FGF8, IL4R, and MEST, as well as PODXL, which we define herein as a new FP-RMS-promoting gene. We show that ETS1, which is induced by both PAX3-FOXO1 and KDM3A, exists in complex with PAX3-FOXO1, and augments PAX3-FOXO1 chromatin occupancy. We further show that the PAX3-FOXO1/ETS1 complex can be disrupted by the clinically relevant small molecule inhibitor YK-4-279. YK-4-279 displaces PAX3-FOXO1 from chromatin and interferes with PAX3-FOXO1-dependent gene regulation, resulting in potent inhibition of growth and invasive properties in FP-RMS, along with downregulation of FGF8, IL4R, MEST and PODXL expression. We additionally show that, in some FP-RMS, KDM3A also increases PAX3-FOXO1 levels. Together, our studies illuminate mechanisms of action of the KDM3A/ETS1 regulatory module, and reveal novel targetable mechanisms of PAX3-FOXO1 chromatin complex regulation, in FP-RMS.
Project description:We purposed to examine the effect of PGF receptor FP in development of bleomycin-induced pulmonary fibrosis in mice. We performed gene expression analysis in the lung of WT and FP-KO mice on Days 0, 7 and 14. We found out that fibrosis-related genes such as various isoforms of collagen, which were induced on Day 7 and continued to increase or remained unchanged on Day 14, were induced to less extent in FP-KO mice. In contrast, expression of inflammation-related genes peaked on Day 7 similarly in WT and FP-KO mice. These results suggest that FP functions in fibrosis-phase, not in peak inflammation phase, and facilitates fibrogenesis by enhancing expression of fibrosis-related genes.