Project description:IL22 induces antimicrobial peptides which influnce microbiota. We used 16s rRNA gene sequencing (16s DNA-seq) to analyze the microbiota with Fc or IL-22Fc treatment.
Project description:The present study focuses on the use of a metaproteomic approach to analyse Black Extrinsic Tooth Stains, a specific type of pigmented extrinsic substance, in a cohort of 96 Children. Metaproteomics is a powerful emerging technology that successfully enabled human protein and bacterial identification of this specific dental biofilm using mass spectrometry. 1600 bacterial proteins were identified in black stains (BS) samples and 2058 proteins in dental plaque (DP) samples whereas 607 and 582 human proteins identified in (BS and DP, respectively). 132 genera bacteria in black stains and dental plaque were identified using phylopeptidomic analysis, showing prevalence of Rothia, Kingella, Nesseria and Pseudopropionibatcterium in black stains samples. We additionally confirmed the metaproteomic approach by performing 16S rRNA. In this work, we showed an interesting diversity of the microbiota and proteome including significant difference between Black stain and dental plaque samples.
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.
Project description:A phylogenetic microarray targeting 66 families described in the human gut microbiota has been developped aud used to monitor the gut microbiota's structure and diversity. The microarray format provided by Agilent and used in this study is 8x15K. A study with a total of 4 chips was realized. Arrays 1 and 2: Hybridization with 100ng of labelled 16S rRNA gene amplicons from a mock community sample and 250ng of labelled 16S rRNA gene amplicons from 1 faecal sample. Each Agilent-030618 array probe (4441) was synthetized in three replicates. Arrays 3 and 4: Hybridization with 250ng of labelled 16S rRNA gene amplicons from 2 faecal samples. Each Agilent-40558 array probe (4441) was synthetized in three replicates.
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Investigators compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups.
Project description:The association between soil microbes and plant roots is present in all natural and agricultural environments. Microbes can be beneficial, pathogenic, or neutral to the host plant development and adaptation to abiotic or biotic stresses. Progress in investigating the functions and changes in microbial communities in diverse environments have been rapidly developing in recent years, but the changes in root function is still largely understudied. The aim of this study was to determine how soil bacteria influence maize root transcription and microRNAs (miRNAs) populations in a controlled inoculation of known microbes over a defined time course. At each time point after inoculation of the maize inbred line B73 with ten bacterial isolates, DNA and RNA were isolated from roots. The V4 region of the 16S rRNA gene was amplified from the DNA and sequenced with the Illumina MiSeq platform. Amplicon sequencing of the 16S rRNA gene indicated that most of the microbes successfully colonized maize roots. The colonization was dynamic over time and varied with the specific bacterial isolate. Small RNA sequencing and mRNA-Seq was done to capture changes in the root transcriptome from 0.5 to 480 hours after inoculation. The transcriptome and small RNA analyses revealed epigenetic and transcriptional changes in roots due to the microbial inoculation. This research provides the foundational data needed to understand how plant roots interact with bacterial partners and will be used to develop predictive models for root response to bacteria.
Project description:To determine microbiota composition associated with loss of KDM5 in intestine, we carried out 16S rRNA seq analyses of dissected intestine from wildtype and kdm5 mutant. [GSM2628181-GSM2628190]. A total of 78 operational taxonomic units (OTUs) were identified in the sequence data. There were about 15 genera much less abundant in kdm5 mutant compared to wildtype. The kdm5 mutant were sensitive to pathogen. To confirm the microbiota associated with loss of KDM5 in intestine, 16S rRNA of new flies were sequenced and analyzed by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China) [GSM3243472-GSM3243481]. A total of 107 operational taxonomic units (OTUs) were identified in the sequence data. There were about 20 genera much less abundant in kdm5 mutant compared to wildtype. To confirm the microbiota associated with loss of KDM5 drosophila feeding with Lactobacillus plantarum, 16S rRNA of kdm5 mutant flies were sequenced and analyzed by Novogene Bioinformatics Technology Co., Ltd. (Tianjin, China) [GSM3263522-GSM3263527]. A total of 92 operational taxonomic units (OTUs) were identified in the sequence data. To confirm the microbiota associated with KDM5 knockdown in intestine, 16S rRNA of Myo1A-Gal4TS/+ and Myo1A-Gal4TS/+;+/kdm5RNAi flies were sequenced and analyzed by Biomarker Co. Ltd. (Beijing, China). [GSM3507915-GSM3507924]. A total of 50 operational taxonomic units (OTUs) were identified in the sequence data. There was a significant different based on the genus level between two groups.