Project description:Consumption of a high fat meal can increase neutrophilic airway inflammation in asthma. This study investigates the molecular mechanisms driving airway neutrophilia following a high fat meal in asthma.
Project description:The Mixed Meal Model is a physiology based mathematical model describing the post-meal interplay between glucose, insulin, triglycerides and non-esterified fatty acids (NEFA).The Mixed Meal Model can be fit to meal response data by estimating nine model parameters from measured plasma glucose, insulin, triglyceride, and NEFA trajectories. These estimated model parameters have been shown to capture features of insulin resistance, beta-cell functionality, and liver fat accumulation from the meal response data.
Project description:Modern humans spend most of their time having eaten recently. The purpose of the current project is to understand how the blood, which contains immune cells, responds in the hours after eating a meal that is moderately high in fat. We used a sequencing method to observe the expression of all the genes in blood cells in five participants who were each fed a high fat meal on three separate days. The results are reported in the manuscript, “Temporal changes in postprandial blood transcriptomes reveal subject-specific pattern of expression of innate immunity genes after a high-fat meal."
Project description:There is few data about effects of temporal segmentation of meal composition on the metabolic response in humans. The meal-induced hormonal secretion in humans strongly depends on the meal composition and on the day time and may be involved in the circadian entrainment of metabolic gene expression. Our study investigated effects of two different diurnal patterns of meal composition (carbohydrate-rich meals in the morning and fat-rich meals in the evening or vice versa) on the gene expression in human subcutaneous adipose tissue (SAT).
Project description:Aedes aegypti mosquito, vector for several viral diseases, undergoes significant physiological changes after a blood meal. Through single-cell RNA sequencing and metabolomics, we unveiled dynamic cellular composition and metabolic adaptations within abdominal midgut and fat body tissues. We revealed high cell diversity, specialized in digestion, metabolism, immunity, and reproduction. While the midgut primarily comprises enterocytes, enteroendocrine, cardia and intestinal stem cells, the fat body consists of not only trophocytes and oenocytes, but also a substantial population of hemocytes and fat body-yolk cells (FYC). The fat body, exhibiting a more complex metabolomic profile than the midgut, played a central role in immune and metabolic gene expression, particularly within trophocytes and FYCs. Additionally, insect-specific viruses were detected at the single-cell level, mainly in the midgut at later stages post-blood meal. These findings offer new vector control strategies by targeting specific abdominal cell populations and metabolic pathways involved after a blood meal.
Project description:White bass (Morone chrysops) are a popular sportfish throughout the southern United States, and one parent of the commercially successful hybrid striped bass (M. chrysops x M. saxatilis). Currently, white bass are cultured using diets formulated for other carnivorous fish, such as largemouth bass (Micropterus salmoides) or hybrid striped bass and contain a significant percentage of marine fish meal. Since there are no studies regarding the utilization of alternative proteins in this species, we evaluated global gene expression of white bass fed diets in which fish meal was partially or totally replaced by various combinations of soybean meal, poultry by-product meal, canola meal, soy protein concentrate, wheat gluten, or a commercial protein blend (Pro-Cision). Significant differential expressed genes and gene ontology of pairwise comparisons between control diet and each test diet are presented and discussed.
Project description:We report the transcriptional response of the zebrafish digestive organs to an acute high-fat feed using RNASeq analysis and highlight the changes in gene expression involved in the synthesis, storage, and dispersal of lipids. These key physiological responses to a high-fat meal all stem from the endoplasmic reticulum (ER), where lipids are formed and assigned to their fates.
Project description:Fat intake is an important determinant in the development of obesity. The small intestine is the principal site of digestion and absorption of nutrients, and these short-term circulating nutrients and hormones as well as neural signals derived from the peripheral tissues in responses to a meal act at multiple central nervous system sites where food intake is controlled. In order to identify the HF-specific peripheral signals that can be therapeutic targets of obesity, we investigated transcriptomic changes in the duodenum mucosa after a HF or LF meal ingestion.
Project description:Fat body is an important tissue in the context of vitellogenesis, vector immunity, vector physiology and vector-parasite interaction. However, the proteome of fatbody and impact of blood meal on the gene expression of this vital organ has not been investigated so far. Therefore, in this study, we made an attempt to identify proteins expressed in fatbody of An. stephensi and their altered expression in response to blood meal. In all, we identified 4,504 proteins in the fatbody using multiple fractionation strategies, which is by far the largest resource of fatbody proteome in any mosquito species. Further, comparative proteomic analysis of fatbody 24 and 48 hours post blood meal led to identification of over 300 differentially expressed proteins. Bioinformatics analysis of these proteins suggested their role in vitellogenesis, lipid transport, mosquito immunity and oxidation-reduction processes. Interestingly, we identified four novel genes,which were found to be differentially expressed upon blood meal. These proteins are potential target for vector control strategies and development of transmission blocking vaccines.
Project description:Despite the existence of a number of studies investigating the effect of insect meal on the growth performance of broilers, knowledge about the metabolic effects of insect meal in broilers is still scarce. Thus, the present study investigated the effect of partial replacement of soybean meal with Hermetia illucens (HI) larvae meal on the liver transcriptome, the plasma metabolome and the cecal microbiome in broilers. For the study, 72 male one-day-old Cobb 500 broilers were divided into three groups (n = 12) and fed three different diets with either 0% (HI0), 7.5% (HI7.5) or 15% (HI15) defatted HI meal for 35 d. While body weight (BW) gain, feed intake, and feed:gain ratio did not differ between groups, breast muscle weight, carcass yield and apparent ileal digestibility (AID) of 12 amino acids were higher in group HI15 than in group HI0 (P > 0.05). Indicators of α-diversity (Chao1 and Observed) in the cecal digesta were higher in groups HI15 and HI7.5 than in group HI0 (P < 0.05). The abundance of 5 families and 18 genera, all of which belonged to the Firmicutes phylum, in the cecal digesta differed among groups (P < 0.05). Concentrations of butyric acid, valeric acid and isobutyric acid in the cecal digesta were lower in group HI15 than in the other two groups (P > 0.05), whereas those of total and other short-chain fatty acids were not different between groups. Liver transcriptomics revealed a total of 70 and 61 differentially expressed transcripts between groups HI15 vs. HI0 and between groups HI7.5 vs HI0, respectively, (P > 0.05). Targeted metabolomics identified 138 metabolites, most of which were triglyceride species, being different between the three groups (FDR < 0.05). According to this study, dietary inclusion of HI larvae meal has no detrimental impact but increases breast muscle weight and carcass weight in broilers suggesting that HI larvae meal can be recommended as a sustainable alternative protein source for broilers.