Project description:After the end of the last ice age, ancestrally marine threespine stickleback fish (Gasterosteus aculeatus) have undergone an adaptive radiation into freshwater environments throughout the Northern Hemisphere, creating an excellent model system for studying molecular adaptation and speciation. Stickleback populations are reproductively isolated to varying degrees, despite the fact that they can be crossed in the lab to produce viable offspring. Ecological and behavioral factors have been suggested to underlie incipient stickleback speciation. However, reproductive proteins represent a previously unexplored driver of speciation. As mediators of gamete recognition during fertilization, reproductive proteins both create and maintain species boundaries. Gamete recognition proteins are also frequently found to be rapidly evolving, and their divergence may culminate in reproductive isolation and ultimately speciation. As an initial investigation into the contribution of reproductive proteins to stickleback reproductive isolation, we characterized the egg coat proteome of threespine stickleback eggs. In agreement with other teleosts, we find that stickleback egg coats are comprised of homologs to the zona pellucida (ZP) proteins ZP1 and ZP3. We explore aspects of stickleback ZP protein biology, including glycosylation, disulfide bonding, and sites of synthesis, and find many substantial differences compared to their mammalian homologs. Furthermore, molecular evolutionary analyses indicate that ZP3, but not ZP1, has experienced positive Darwinian selection across teleost fish. Taken together, these changes to stickleback ZP protein architecture suggest that the egg coats of stickleback fish, and perhaps fish more generally, have evolved to fulfill a more protective functional role than their mammalian counterparts.
Project description:After the end of the last ice age, ancestrally marine threespine stickleback fish (Gasterosteus aculeatus) have undergone an adaptive radiation into freshwater environments throughout the Northern Hemisphere, creating an excellent model system for studying molecular adaptation and speciation. Stickleback populations are reproductively isolated to varying degrees, despite the fact that they can be crossed in the lab to produce viable offspring. Ecological and behavioral factors have been suggested to underlie incipient stickleback speciation. However, reproductive proteins represent a previously unexplored driver of speciation. As mediators of gamete recognition during fertilization, reproductive proteins both create and maintain species boundaries. Gamete recognition proteins are also frequently found to be rapidly evolving, and their divergence may culminate in reproductive isolation and ultimately speciation. As an initial investigation into the contribution of reproductive proteins to stickleback reproductive isolation, we characterized the egg coat proteome of threespine stickleback eggs. In agreement with other teleosts, we find that stickleback egg coats are comprised of homologs to the zona pellucida (ZP) proteins ZP1 and ZP3. We explore aspects of stickleback ZP protein biology, including glycosylation, disulfide bonding, and sites of synthesis, and find many substantial differences compared to their mammalian homologs. Furthermore, molecular evolutionary analyses indicate that ZP3, but not ZP1, has experienced positive Darwinian selection across teleost fish. Taken together, these changes to stickleback ZP protein architecture suggest that the egg coats of stickleback fish, and perhaps fish more generally, have evolved to fulfill a more protective functional role than their mammalian counterparts.
Project description:Genome characterization, prevalence and transmission mode of a novel picornavirus associated with the Threespine Stickleback (Gasterosteus aculeatus)
Project description:In this study, we used whole genome comparative oligonucleotide microarrays to investigate the brain transcriptomic response to predator cues using the threespine stickleback, Gasteroteus aculeatus. We showed that exposure to olfactory, visual and tactile cues of a predator (rainbow trout, Oncorhynchus mykiss) for six days resulted in subtle but significant transcriptomic changes in the brain of sticklebacks. Gene functional analysis and gene ontology (GO) enrichment revealed that the majority of the transcripts differentially expressed between the fish exposed to predator cues and the control group are primarily related to antigen processing and presentation (involving primarily the major histocompatibility complex (MHC)), transmission of synaptic signals, brain metabolic processes, gene regulation, or visual perception. Pathway analysis identified synaptic long-term depression, RAN signaling, relaxin signaling and phototransduction as the top four pathways that were over-represented.
Project description:Restriction site Associated DNA (RAD) tags are a genome-wide representation of every site of a particular restriction enzyme by short DNA tags. Most organisms segregate large numbers of DNA sequence polymorphisms that disrupt restriction sites, which allow RAD tags to serve as genetic markers spread at a high-density throughout the genome. Here, we demonstrate the applicability of RAD markers for both individual and bulk-segregant genotyping. First, we show that these markers can be identified and typed on pre-existing microarray formats. Second, we present a method that uses RAD marker DNA to rapidly produce a low-cost microarray genotyping resource that can be used to efficiently identify and type thousands of RAD markers. We demonstrate the utility of the former approach by using a tiling path array for the fruit fly to map a recombination breakpoint, and the latter approach by creating and utilizing an enriched RAD marker array for the threespine stickleback. The high number of RAD markers enabled localization of a previously identified region, as well as a second novel region also associated with the lateral plate phenotype. Taken together, our results demonstrate that RAD markers, and the method to develop a RAD marker microarray resource, allow high-throughput, high-resolution genotyping in both model and non-model systems. Keywords: microarray genotyping
Project description:In this study, we used whole genome comparative oligonucleotide microarrays to investigate the brain transcriptomic response to predator cues using the threespine stickleback, Gasteroteus aculeatus. We showed that exposure to olfactory, visual and tactile cues of a predator (rainbow trout, Oncorhynchus mykiss) for six days resulted in subtle but significant transcriptomic changes in the brain of sticklebacks. Gene functional analysis and gene ontology (GO) enrichment revealed that the majority of the transcripts differentially expressed between the fish exposed to predator cues and the control group are primarily related to antigen processing and presentation (involving primarily the major histocompatibility complex (MHC)), transmission of synaptic signals, brain metabolic processes, gene regulation, or visual perception. Pathway analysis identified synaptic long-term depression, RAN signaling, relaxin signaling and phototransduction as the top four pathways that were over-represented. Adult fish were placed in six different 26L tanks with three fish per tank in a partially recirculating flow-through system. Half of the tanks were assigned to the control group and the other half to the experimental group.10 samples were selected for microarray analysis. The ten samples comprised five biological replicates in the experimental group (fish exposed to predator cues) and five biological replicates in the control group (fish not exposed to predator cues), and were evenly distributed across tanks. The cDNA labeling (single color), hybridization, washing and scanning steps were performed in the NimbleGen microarray gene expression service department.
Project description:Sexual dimorphism can evolve through sex-specific regulation of the same gene set. However, sex chromosomes can also facilitate this by directly linking gene expression to sex. Moreover, heteromorphic sex chromosomes often exhibit different gene content, which contributes to sexual dimorphism. Understanding patterns of sex-biased gene expression across organisms is important for gaining insight about the evolution of sexual dimorphism and sex chromosomes. Moreover, studying gene expression in species with recently established sex chromosomes can help understand the evolutionary dynamics of gene loss and dosage compensation. The threespine stickleback is known for its strong sexual dimorphism, especially during the reproductive period. Sex is determined by a young XY sex chromosome pair with three non-recombining regions that have started to degenerate. Using the high multiplexing capability of 3′ QuantSeq to sequence the sex-biased transcriptome of liver, gills and brain, we provide the first characterization of sex-specific transcriptomes from ~80 stickleback (40 males and 40 females) collected from a natural population during the reproductive period. We find that the liver is extremely differentiated (36% of autosomal genes) and reflects ongoing reproduction, while the brain shows very low levels of differentiation (0.78%) with no particular functional enrichment. Finally, the gills exhibit high levels of differentiation (5%), suggesting that sex should be considered in physiological and ecotoxicological studies of gill responses in fishes. We also find that sex-biased gene expression in X-linked genes is mainly driven by a lack of dosage compensation. However, sex-biased expression of genes that have conserved copies on both sex chromosomes is likely driven by the degeneration of Y allele expression and a down-regulation of male-beneficial mutations on the X chromosome.
Project description:Total RNA was extracted from liver tissues of lab-reared threespine stickleback. The dataset combines transcripts common to two experiments: first generation fish originating from the Baltic Sea near Helsinki (Finland) bred using a paternal half-sib design (E-MTAB-3098), and second generation fish originating from three different Fennoscandian populations bred from a full-sib design. Annotated R scripts defining the normalization procedures are available as additional files (see http://www.ebi.ac.uk/arrayexpress/files/E-MTAB-3099). Additional files also include a metadata file (matrix.df.csv) to facilitate construction of design matrices used by the snm package.
Project description:In order to identify gene expression difference between marine and freshwater stickleback populations, we compared the transcriptomes of seven adult tissues (eye, gill, heart, hypothalumus, liver, pectoral muscle, telencephalon) between a marine population sampled from the mouth of the Little Campbell river in British Columbia (LITC) and a freshwater population (Fishtrap Creek, FTC) from northern Washington. For each population, the sampled individuals were the lab-reared progeny of a single pair of wild-caught parents.
Project description:Total RNA was extracted from liver tissues of lab-reared threespine stickleback. First generation fish originating from the Baltic Sea near Helsinki (Finland) were bred using a paternal half-sib design. At 6 months individuals were randomly assigned to either a treatment or control group: the temperature of treated fish (T) was raised 1oC per hour over the course of 6h to a final temperature of 23oC, then maintained for 1h at final temperature; control (C) fish were maintained at 17oC under similar holding conditions. Immediately following experimental (or sham) treatment, fish were euthanized by anaesthetic overdose. Liver tissues were immediately dissected and flash frozen in liquid nitrogen for subsequent RNA extraction. Annotated R scripts defining the normalization procedures are available as additional files (see http://www.ebi.ac.uk/arrayexpress/files/E-MTAB-3098). Additional files also include a targets file to assist with reading raw data into R (Targs.txt), and a metadata file (matrix.df.csv) to facilitate construction of design matrices used by the M-bsnmM-b package.