Project description:Early-life antibiotic exposure perturbs the intestinal microbiota, alters innate intestinal immunity, and accelerates type 1 diabetes development in the NOD mouse model. Here we found that maternal cecal microbiota transfer (CMT) to NOD mice with early-life antibiotic perturbation partially rescued the induced T1D acceleration. The restoration effects on the intestinal microbiome were substantial and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed cecal and serum metabolites and normalized innate and adaptive immune effectors. CMT restored patterns of ileal microRNA and histone regulation of gene expression and exon-splicing. Based on the analyses of experimental data, we propose an innate intestinal immune network involving CD44, TLR2, and Reg3g, as well as their multiple microRNA and epigenetic regulators that sense intestinal signaling by the gut microbiota. This regulation affects downstream immunological tone, leading to protection against the tissue-specific T1D injury.
Project description:Early-life antibiotic exposure perturbs the intestinal microbiota, alters innate intestinal immunity, and accelerates type 1 diabetes development in the NOD mouse model Here we found that maternal cecal microbiota transfer (CMT) to NOD mice with early-life antibiotic perturbation partially rescued the induced T1D acceleration The restoration effects on the intestinal microbiome were substantial and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways CMT also protected against perturbed cecal and serum metabolites and normalized innate and adaptive immune effectors CMT restored patterns of ileal microRNA and histone regulation of gene expression and exon-splicing Based on the analyses of experimental data, we propose an innate intestinal immune network involving CD44, TLR2, and Reg3g, as well as their multiple microRNA and epigenetic regulators that sense intestinal signaling by the gut microbiota This regulation affects downstream immunological tone, leading to protection against the tissue-specific T1D injury
Project description:Early-life antibiotic exposure perturbs the intestinal microbiota, alters innate intestinal immunity, and accelerates type 1 diabetes development in the NOD mouse model. Here we found that maternal cecal microbiota transfer (CMT) to NOD mice with early-life antibiotic perturbation partially rescued the induced T1D acceleration. The restoration effects on the intestinal microbiome were substantial and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed cecal and serum metabolites and normalized innate and adaptive immune effectors. CMT restored patterns of ileal microRNA and histone regulation of gene expression and exon-splicing. Based on the analyses of experimental data, we propose an innate intestinal immune network involving CD44, TLR2, and Reg3g, as well as their multiple microRNA and epigenetic regulators that sense intestinal signaling by the gut microbiota. This regulation affects downstream immunological tone, leading to protection against the tissue-specific T1D injury.
Project description:Here we asked whether the single early-life (pup day of life P5-P10) antibiotic pulse was sufficient to enhance Type-1 Diabetes (T1D) in Non Obese Diabetic (NOD) mice. Two sets of experimental samples were analyzed for changes in intestinal pathway expression using the NOD mouse model and Pulsed Antibiotic Therapy (PAT). NODPAT sought to describe the intestinal changes related to early life PAT treatment while the RESTORE experiment sought to restore an antibiotic-perturbed host and measure the intestinal expression changes over time. We provide evidence that maternal microbiota provides partial restoration of both the altered pup microbiota and its immunological phenotypes.
Project description:Cecal microbiota transfer rescues the antibiotic-induced acceleration of type 1 diabetes and alteration of intestinal gene expression
Project description:Cecal microbiota transfer rescues the antibiotic-induced acceleration of type 1 diabetes and alteration of intestinal gene expression
Project description:Cecal microbiota transfer rescues the antibiotic-induced acceleration of type 1 diabetes and alteration of intestinal gene expression I