Project description:The link between human gut microbiota (a complex group of microorganisms including not only bacteria but also fungi, viruses, etc.,) and the physiological state is nowadays unquestionable. Metaproteomic has emerged as a useful technique to characterize this microbial community, not just taxonomically, but also focusing on specific biological processes carried out by gut microbiota that may have an effect in the host health or pathological state. Cystic fibrosis is a genetic disease in which the microbiota of the respiratory tract determines the patient's survival and differences in composition of gut microbiota of cystic fibrosis patients respect to healthy infants have been reported. In order to characterize this host-microbiota inter-relation, we carried out the metaproteomic study of 30 stool samples from infants with cystic fibrosis.
Project description:Pseudomonas aeruginosa airway infection is the primary cause of death in Cystic Fibrosis (CF). During early infection P. aeruginosa produces multiple virulence factors, which cause acute pulmonary disease and are largely regulated by quorum sensing (QS) intercellular signalling networks. Longitudinal clinical studies have observed the loss, through adaptive mutation, of QS and QS-related virulence in late chronic infection. Although the mechanisms are not understood, infection with QS mutants has been linked to a worse outcome for CF patients. By comparing QS-active and QS-inactive P. aeruginosa CF isolates, we have identified novel virulence factors and pathways associated with QS disruption. In particular, we noted factors implicating increased intra-phagocyte survival. Our data present novel targets as candidates for future CF therapies. Some of these targets are already the subject of drug development programmes for the treatment of other bacterial pathogens and may provide cross-over benefit to the CF population. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE25128: Gene expression data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections GSE25129: Comparative genomic hybridisation data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections
Project description:The aim of this study is to characterise and compare the composition of the microbiota from sputum samples of cystic fibrosis sufferers from different centres. These data are part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
2014-09-16 | E-ERAD-265 | biostudies-arrayexpress
Project description:Study of the airway microbiota in the early stages of infection in cystic fibrosis
Project description:Production of functional proteins requires multiple steps including gene transcription and post-translational processing. MicroRNAs (miRNA) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated remains uncertain. We discovered that microRNA-138 regulates CFTR expression through its interactions with the transcriptional regulatory protein SIN3A. Treating airway epithelia with a miR-138 mimic increased CFTR mRNA and also enhanced CFTR abundance and transepithelial Cl- permeability independently of elevated mRNA levels. A miR-138 anti-miR had the opposite effects. Importantly, miR-138 altered the expression of many genes encoding proteins that associate with CFTR and may influence its biosynthesis. The most common CFTR mutation, M-NM-^TF508, causes protein misfolding, degradation, and cystic fibrosis. Remarkably, manipulating the miR-138 regulatory network also improved biosynthesis of CFTR-M-NM-^TF508 and restored Cl- transport to cystic fibrosis airway epithelia. This novel miRNA-regulated network directs gene expression from the chromosome to the cell membrane, indicating that an individual miRNA can control a cellular process broader than previously recognized. This discovery also provides new therapeutic avenues for restoring CFTR function to cells affected by the most common cystic fibrosis mutation. 12 samples of Calu-3 cells representing different interventions.