Project description:Background: Pantoea ananatis LMG 2665T synthesizes and utilizes acyl homoserine lactones (AHLs) for signaling. In this strain, short chain AHLs (C4 to C8) are produced by the EanI/R quorum sensing (QS) system that is involved in pathogenicity and biofilm formation. The complete set of genes regulated by the EanI/R system in P. ananatis LMG 2665T is still not fully known. In the present study, RNA-seq was used to analyze the transcriptome profiles controlled by the EanI/R system in this strain by comparing the wild type strain and its QS mutant 2665T ean∆I/R during lag and log stages. The RNA seq data was validated by RT qPCR. Results: The results showed that the EanI/R regulon in P. ananatis LMG 2665T comprised 144 genes, constituting 3.3% of the whole transcriptome under the experimental conditions in this study. The majority of genes regulated by the EanI/R system included genes for flagella assembly, bacterial chemotaxis, pyruvate metabolism, two component system, metabolic pathways, microbial metabolism and biosynthesis of secondary metabolites. Conclusions: This is the first study to identify the EanI/R QS regulon in P. ananatis LMG 2665T. Functional analysis of genes regulated the EanI/R system in LMG 2665T could help unveil genes that play a vital role in pathogenesis and survival strategies of this pathogen.
Project description:Background: Lactococcus garvieae is a bacterial pathogen that affects different animal species and human. Despite the widespread distribution and emerging clinical significance of L. garvieae in both veterinary and human medicine, there is almost a complete lack of knowledge about the genetic content of this microorganism. In the present study the genomic content of L. garvieae CECT 4531 was analyzed by bioinformatic tools and microarray-based comparative genomic hybridizations (CGH) experiments, using Lactococcus lactis subsp. lactis IL1403 and Streptococcus pneumoniae TIGR4 as reference microorganisms. Results: The combination and integration of in silico analyses and in vitro (CGH) experiments performed between the reference microorganisms allowed establishing an inter-species hybridization framework with a detection threshold based on the sequence similarity ≥70%. With this threshold value, 267 genes were identified as having an analogue in L. garvieae, most of which (n = 258) have been documented for the first time in this pathogen. Most of these genes are related to ribosomal, sugar metabolism or energy conversion systems. Some identified genes could be involved in the pathogenesis of L. garvieae infections. Conclusions: In this study a comparative analysis based on microarray interspecies hybridization and the use of bioinformatic tools were used for the first time to study the genetic content of L. garvieae CECT 4531. Towards this approach, we identified 267 potentially present genes in L. garvieae CECT 4531, some of which could be involved in the pathogenesis of L. garvieae infections, such as als or mycA. These results provide the first insight into the genome content of L. garvieae.
Project description:This study reports the release of the complete nucleotide sequence of Komagataeibacter hansenii LMG 23726T This organism is a cellulose producer, and its genome may provide more information to aid in the understanding of the genes necessary for cellulose biosynthesis.
Project description:Lactococcus lactis NZ9000 and its parent MG1363 are the most commonly used lactic acid bacteria for expression and physiological studies. We noted unexpected but significant differences in the growth behaviors of both strains. We sequenced the entire genomes of the original NZ9000 and MG1363 strains using an ultradeep sequencing strategy. The analysis of the L. lactis NZ9000 genome yielded 79 differences, mostly point mutations, with the annotated genome sequence of L. lactis MG1363. Resequencing of the MG1363 strain revealed that 73 out of the 79 differences were due to errors in the published sequence. Comparative transcriptomic studies revealed several differences in the regulation of genes involved in sugar fermentation, which can be explained by two specific mutations in a region of the ptcC promoter with a key role in the regulation of cellobiose and glucose uptake.