Project description:We isolated a thermophilic hydrogenotrophic methanogen, Methanothermobacter sp. strain CaT2, which is able to aggregate and utilize formate. Here, we report the complete genome sequence of this organism.
Project description:High-pH and high-alkalinity anaerobic digestion for in-situ biogas upgrading: insights into methane production, biogas purity, and process performance.
Project description:Here, we describe the complete genome of Methanothermobacter sp. strain KEPCO-1, a thermophilic and hydrogenotrophic methanogen that was isolated from an anaerobic digester in Seoul, Republic of Korea. The genome of KEPCO-1 shares 96.98% of its sequence with Methanothermobacter marburgensis strain DSM 2133 and consists of 1,741,029 bp, with 1,822 protein-coding genes, 44 noncoding RNAs, and a GC content of 48.47%. The development of this genome will facilitate future genomic studies of KEPCO-1.
Project description:Methanothermobacter tenebrarum strain RMAST has a complete genomic length of 1,472,762 bp, a GC content of 42.1%, 1,599 coding DNA sequences (CDSs), 1 CRISPR array, 3 rRNAs, and 38 tRNAs.
Project description:The functional diversity of soil microbial communities was explored for a poplar plantation, which was treated solely with biogas slurry, or combined with biochar at different fertilization intensities over several years.
Project description:Feasibility of in-situ bioelectrocatalytic computation to implement simultaneous nitrogen removal of anaerobic digestate and biogas upgrading Raw sequence reads
Project description:In the thermophilic biogas-producing microbial community, the genus Methanothermobacter was previously described to be frequently abundant. The aim of this study was to establish and analyze the genome sequence of the archaeal strain Methanothermobacter wolfeii SIV6 originating from a thermophilic industrial-scale biogas fermenter and compare it to related reference genomes. The circular chromosome has a size of 1,686,891 bases, featuring a GC content of 48.89%. Comparative analyses considering three completely sequenced Methanothermobacter strains revealed a core genome of 1494 coding sequences and 16 strain specific genes for M. wolfeii SIV6, which include glycosyltransferases and CRISPR/cas associated genes. Moreover, M. wolfeii SIV6 harbors all genes for the hydrogenotrophic methanogenesis pathway and genome-centered metatranscriptomics indicates the high metabolic activity of this strain, with 25.18% of all transcripts per million (TPM) belong to the hydrogenotrophic methanogenesis pathway and 18.02% of these TPM exclusively belonging to the mcr operon. This operon encodes the different subunits of the enzyme methyl-coenzyme M reductase (EC: 2.8.4.1), which catalyzes the final and rate-limiting step during methanogenesis. Finally, fragment recruitment of metagenomic reads from the thermophilic biogas fermenter on the SIV6 genome showed that the strain is abundant (1.2%) within the indigenous microbial community. Detailed analysis of the archaeal isolate M. wolfeii SIV6 indicates its role and function within the microbial community of the thermophilic biogas fermenter, towards a better understanding of the biogas production process and a microbial-based management of this complex process.