Project description:Salmonella enterica variants exhibit diverse host adaptation, outcome of infection, and associated risk to humans. Analysis of 6,335 Salmonella isolates recovered from integrated human-animal surveillance in Emilia Romagna region, Northern Italy, (human population ca 4,500,000), from 2012 to 2017 showed that Salmonella enterica serovar Derby constitutes a swine associated serovar in this epidemiological context while representing also a significant causative agent of human infections. Comparison of the distribution of subtypes of Salmonella Derby from human and swine identified isolates with a distinct PFGE profile that were significantly less isolated in human infections than in swine infections compared to all other subtypes. Here we show that isolates with this PFGE profile form a distinct phylogenetic sub-clade within Salmonella Derby and exhibit a marked reduction in invasion and replication in human epithelial cells but a relatively small reduction in swine epithelial cells, in line with the epidemiological evidence. A single missense mutation in hilD, that encodes the master-regulator of the Salmonella Pathogenicity Island 1 (SPI-1), was identified in this lineage of Salmonella Derby. Since SPI-1 encodes for a primary system of Salmonella invasion into epithelial cells, we investigated the role of the observed mutation in detail. We demonstrated that the missense mutation results in a loss of function of HilD that accounts for the reduced invasion and replication in human epithelial cells while showing a relatively small impact on the interaction with swine cells. This finding is suggestive of a mechanism of invasion alternative to SPI-1 in the Salmonella-swine combination
2020-12-16 | GSE142220 | GEO
Project description:Investigating the Antibiotic Resistance Genes in Wild Animals and Humans
Project description:Salmonella enterica serovar Typhimurium (S. Typhimurium) definitive phage type 104 (DT104) has caused significant morbidity and mortality in humans and animals for almost three decades. We have completed the full DNA sequence of one DT104 strain, NCTC13348 and show that the main differences between the genome of this isolate and the previously sequenced S. Typhimurium LT2 lie in integrated prophage elements and the Salmonella Genomic Island 1 encoding antibiotic resistance genes. Thirteen isolates of S. Typhimurium DT104 with different pulsed field gel electrophoresis (PFGE) profiles were analyzed by multi locus sequence typing (MLST), plasmid profiling, hybridization to a Pan-Salmonella DNA microarray and prophage-based multiplex PCR. All the isolates belonged to a single MLST type ST19. Microarray data demonstrated that the 13 DT104 isolates were remarkably conserved in gene content. The PFGE band-size differences in these isolates could be explained to a great extent by changes in prophage and plasmid content. Thus, here the nature of variation in different S. Typhimurium DT104 isolates is further defined at the genome level illustrating how this phage type is evolving over time.
Project description:Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonize the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. Besides compromising public health and food safety, sub-clinical salmonellosis is also believed to be a major problem affecting the profitability of the pig industry. Distinct responses to Salmonella infection have been observed in pigs, some recovering faster and shedding lower levels of Salmonella in faeces than others (low shedders, LS versus persistent shedders, PS). This trait variation could indicate the existence of a genetic component to Salmonella shedding and resistance that may be exploited in animal breeding and disease diagnostics. The study aimed to characterize changes in miRNA expression in response to Salmonella infection.
Project description:Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonize the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. Besides compromising public health and food safety, sub-clinical salmonellosis is also believed to be a major problem affecting the profitability of the pig industry. Distinct responses to Salmonella infection have been observed in pigs, some recovering faster and shedding lower levels of Salmonella in faeces than others (low shedders, LS versus persistent shedders, PS). This trait variation could indicate the existence of a genetic component to Salmonella shedding and resistance that may be exploited in animal breeding and disease diagnostics. The study aimed to identify porcine genes and gene co-expression networks that differentiate distinct responses to Salmonella challenge with respect to faecal Salmonella shedding.
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humans’ age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports
Project description:<p>The study of antimicrobial resistance (AMR) in infectious diarrhea has generally been limited to cultivation, antimicrobial susceptibility testing and targeted PCR assays. When individual strains of significance are identified, whole genome shotgun (WGS) sequencing of important clones and clades is performed. Genes that encode resistance to antibiotics have been detected in environmental, insect, human and animal metagenomes and are known as "resistomes". While metagenomic datasets have been mined to characterize the healthy human gut resistome in the Human Microbiome Project and MetaHIT and in a Yanomani Amerindian cohort, directed metagenomic sequencing has not been used to examine the epidemiology of AMR. Especially in developing countries where sanitation is poor, diarrhea and enteric pathogens likely serve to disseminate antibiotic resistance elements of clinical significance. Unregulated use of antibiotics further exacerbates the problem by selection for acquisition of resistance. This is exemplified by recent reports of multiple antibiotic resistance in Shigella strains in India, in Escherichia coli in India and Pakistan, and in nontyphoidal Salmonella (NTS) in South-East Asia. We propose to use deep metagenomic sequencing and genome level assembly to study the epidemiology of AMR in stools of children suffering from diarrhea. Here the epidemiology component will be surveillance and analysis of the microbial composition (to the bacterial species/strain level where possible) and its constituent antimicrobial resistance genetic elements (such as plasmids, integrons, transposons and other mobile genetic elements, or MGEs) in samples from a cohort where diarrhea is prevalent and antibiotic exposure is endemic. The goal will be to assess whether consortia of specific mobile antimicrobial resistance elements associate with species/strains and whether their presence is enhanced or amplified in diarrheal microbiomes and in the presence of antibiotic exposure. This work could potentially identify clonal complexes of organisms and MGEs with enhanced resistance and the potential to transfer this resistance to other enteric pathogens.</p> <p>We have performed WGS, metagenomic assembly and gene/protein mapping to examine and characterize the types of AMR genes and transfer elements (transposons, integrons, bacteriophage, plasmids) and their distribution in bacterial species and strains assembled from DNA isolated from diarrheal and non-diarrheal stools. The samples were acquired from a cohort of pediatric patients and controls from Colombia, South America where antibiotic use is prevalent. As a control, the distribution and abundance of AMR genes can be compared to published studies where resistome gene lists from healthy cohort sequences were compiled. Our approach is more epidemiologic in nature, as we plan to identify and catalogue antimicrobial elements on MGEs capable of spread through a local population and further we will, where possible, link mobile antimicrobial resistance elements with specific strains within the population.</p>