Project description:The zur regulon in Neisseria meningitidis was elucidated in the strain MC58 using a zur knockout strain and conditions which activate Zur ( zinc supplementation in the medium)
Project description:Microarray comparative genome hybridization (mCGH) data was collected from one Neisseria cinerea, two Neisseria lactamica, two Neisseria gonorrhoeae, and 48 Neisseria meningitidis isolates. For N. meningitidis, these isolates are from diverse clonal complexes, invasive and carriage strains, and all major serogroups. The microarray platform represented N. meningitidis strains MC58, Z2491, and FAM18 and N. gonorrhoeae FA1090.
Project description:Neisseria meningitidis is a major cause of bacterial meningitis and septicemia worldwide. Seven new serogroup C meningococci were isolated from two provinces of China in January, 2006. Their PorA VR types were P1.20, 9. Multilocus sequence typing results indicated that they all belonged to ST-7. It is a new serogroup C N. meningitidis sequence type clone identified in China. Here we also present the results of a genomic comparison of these isolates with other 15 N. meningitidis serogroup A and B isolates, which belonged to ST-7, based on comparative genomic hybridization analysis. The data described here would be helpful to monitor the spread of this new serogroup C meningococci sequence type clone in China and worldwide. Keywords: comparative genomic hybridization
Project description:Neisseria meningitidis is the leading cause of bacterial meningitis and septicemia worldwide. The novel ST-4821 clonal complex caused several serogroup C meningococcal outbreaks unexpectedly during 2003–2005 in China. We fabricated a whole-genome microarray of Chinese N. meningitidis serogroup C representative isolate 053442 and characterized 27 ST-4821 complex isolates which were isolated from different serogroups using comparative genomic hybridization (CGH) analysis. This paper provides important clues which are helpful to understand the genome composition and genetic background of different serogroups isolates, and possess significant meaning to the study of the newly emerged hyperinvasive lineage. Keywords: comparative genomic hybridization
Project description:PFGRC has developed a cost effective alternative to complete genome sequencing in order to study the genetic differences between closely related species and/or strains. The comparative genomics approach combines Gene Discovery (GD) and Comparative Genomic Hybridization (CGH) techniques, resulting in the design and production of species microarrays that represent the diversity of a species beyond just the sequenced reference strain(s) used in the initial microarray design. These species arrays may then be used to interrogate hundreds of closely related strains in order to further unravel their evolutionary relationships. The Neissiria are among most deadly pathogens world-wide. The infections and outbreaks caused by this pathogens is quite frequent despite existing diagnostic network and therapeutic means. Therefore, developing reliable diagnostic tools and efficient (broad-spectrum) therapeutics for Neisseria meningitidis remain a public health priority for every country in world today. The comparative genomics study will provide the largest hitherto genomic data sets regarding this pathogen.These large data sets will enable us as well as other members of scientific community to conduct comprehensive data mining in the form of gene association studies with statistical power and significance.
Project description:Neisseria meningitidis is an obligate commensal colonising the human nasopharynx and occasionally invades the bloodstream causing life-threatening meningitis and septicaemia. The gene NMB0419 on the genome of N. meningitidis MC58 encodes a putative Sel1-like repeat (SLR) containing protein, which has been implicated in mediating meningococcal invasion of epithelial cells. We prepared RNA samples from N. meningitidis MC58 (WT) and its isogenic mutant of NMB0419 grown to log phase in in-vitro culture. The RNA samples were subjected to RNA sequencing. The resulting transcriptomes were compared to determine the genes that differentially expressed in NMB0419 mutant.