Project description:Transcriptome profiling of a multi insecticide resistant strain of Anopheles gambiae from Burkina Faso compared to a susceptible strain Ngousso from Cameroon.
Project description:Transcriptome profiling of a bendiocarb resistant strain of Anopheles gambiae in Cameroon (S form) compared to the susceptible strain Kisumu (S form)
Project description:Proteomic analysis of Anopheles gambiae brain tissue after in-gel trypsin digestion. To gain insights into neurobiology of the Anopheles gambiae mosquito, we carried out a proteomic analysis of its brain using a comprehensive proteomic approach.
Project description:Transcriptome profiling of three DDT resistant strains of Anopheles gambiae in Cameroon (Gare, Messa and Nkolondom- 2 M forms and one S form) compared to the susceptible strain Ngousso (M form) and Kisumu (S form). S-form is distributed across sub-Saharan Africa and breeds mostly in association with rain-dependent pools and temporary puddles. M-form distribution overlaps with that of S-form in West and Central Africa, but the former form is apparently absent east of the Great Rift Valley; it is able to exploit relatively more permanent breeding sites, often closely associated with human activities, such those created by irrigation, rice cultivation and urbanization (Santolamazza et al., 2011).
Project description:Heteromorphic sex chromosomes induce potentially deleterious gene expression imbalances that are frequently corrected by dosage compensation (DC). Three distinct molecular strategies to achieve DC have been previously described in nematodes, fruit flies and mammals. The reason for these mechanistic differences remain unclear: Are they a consequence of distinct genomes and gene content, functional or ecological constraints, or random initial commitment to an evolutionary trajectory? Here, we study DC in the malaria mosquito Anopheles gambiae. The X chromosomes of Anopheles and Drosophila evolved independently, yet from the same ancestral autosome and share a high degree of homology. We find that Anopheles achieves DC by an entirely different mechanism compared to the MSL complex - H4K16ac axis operating in Drosophila. CRISPR knock-out of msl-2 in Anopheles leads to early embryonic lethality and affects both sexes. Transcriptome analyses indicate that this phenotype is not a consequence of defective X chromosome DC, but instead relates to misregulation of developmental genes. Furthermore, Histone H4 Lysine 16 acetylation does not mark an X chromosome territory, neither does it display a sexually dimorphic genome-wide distribution by ChIP. We conclude that a novel pathway confers X chromosome upregulation in male Anopheles. Our findings highlight the pluralism of how organisms cope with gene-dosage alterations and show that different mechanisms can evolve even in scenarios of highly similar genomic and functional constraints.
Project description:Comparison of a pyrethroid insecticides resistant field population of Anopheles gambiae ss collected in Tiefora, Burkina Faso (2014) compared to a lab susceptible ss Anopheles gambiae Kisumu.
Project description:Wolbachia, an endosymbiotic bacterium, is being investigated as a vector control agent in several insect species. Along with the well known classical reproductive parasitism Wolbachia employs against its host to spread within the population, it is emerging that the bacteria can protect the host against pathogens and reduced pathogen transmission. Anopheles mosquitoes, which transmit malaria, have never been found to harbour Wolbachia in nature, and despite numerous transinfection attempts, no stable line has been developed. However recently, two strains of Wolbachia, wAlbB from Aedes albopictus, and wRi from Drosophila simulans were cultured in Anopheles gambiae Sua5B cells. These cell lines provides an amenable system to study Wolbachia-Anopheles interaction in the absence of a stable transinfected line. It has been proposed that the compromised vector competence of Wolbachia infected insects is due to an up regulation of the basal immune state. We therefore completed a genome wide expression profile of Wolbachia infected Anopheles, assessing both wAlbB and wRi infected cells in parallel against uninfected Sua5B cells.
Project description:Wolbachia, an endosymbiotic bacterium, is being investigated as a vector control agent in several insect species. Along with the well known classical reproductive parasitism Wolbachia employs against its host to spread within the population, it is emerging that the bacteria can protect the host against pathogens and reduced pathogen transmission. Anopheles mosquitoes, which transmit malaria, have never been found to harbour Wolbachia in nature, and despite numerous transinfection attempts, no stable line has been developed. However recently, two strains of Wolbachia, wAlbB from Aedes albopictus, and wRi from Drosophila simulans were cultured in Anopheles gambiae Sua5B cells. These cell lines provides an amenable system to study Wolbachia-Anopheles interaction in the absence of a stable transinfected line. It has been proposed that the compromised vector competence of Wolbachia infected insects is due to an up regulation of the basal immune state. We therefore completed a genome wide expression profile of Wolbachia infected Anopheles, assessing both wAlbB and wRi infected cells in parallel against uninfected Sua5B cells. Two strains of Wolbachia, wRi from Drosophila simulans and wAlbB from Aedes albopictus were transfered into Anopheles gambiae Sua5B cells via the shell vial technique. After over 30 passages, these Wolbachia infected cells lines were then compared, in parallel, to the original uninfected Sua5B cells using Affymetrix microarrays.